
Journal of Parallel and Distributed Computing 163 (2022) 62–82

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Blockchain-based automated and robust cyber security management

Songlin He a, Eric Ficke b, Mir Mehedi Ahsan Pritom b, Huashan Chen b, Qiang Tang c,
Qian Chen d, Marcus Pendleton e, Laurent Njilla f, Shouhuai Xu g,∗
a Department of Computer Science, New Jersey Institute of Technology, USA
b Department of Computer Science, University of Texas at San Antonio, USA
c School of Computer Science, University of Sydney, Australia
d Department of Electrical and Computer Engineering, University of Texas at San Antonio, USA
e U.S. Air Force Research Laboratory, USA
f U.S. Air Force 90 COS/CYD, USA
g Department of Computer Science, University of Colorado Colorado Springs, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 March 2021
Received in revised form 11 November 2021
Accepted 8 January 2022
Available online 4 February 2022

Keywords:
Cyber security management
Blockchain
Hyperledger fabric
IPFS

We initiate the study on the problem of automated and robust Cyber Security Management (CSM). We
exemplify the problem by investigating how CSM should respond to the discovery of cyber intelligence
that identifies new attackers, victims, or defense capabilities. Given the complexity of CSM, we divide it
into three classes, referred to as Network-centric (N-CSM), Tools-centric (T-CSM) and Application-centric
(A-CSM). These lead to a range of functions for examining whether, and to what extent, a network has
been compromised. Moreover, we propose to incorporate blockchain (via Hyperledger Fabric) to build
a decentralized CSM system, dubbed B2CSM, that ensures the retrieval of valid invocation results for
CSM purposes. We also integrate B2CSM with a decentralized storage network (DSN), instantiated by
InterPlanetary File System (IPFS), to reduce on-chain storage costs without hindering its robustness. We
present the design and implementation of the prototype B2CSM system. Experiments with real-world
datasets show that the CSM solutions and system are effective and efficient.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

The importance of enterprise-level cyber security management
cannot be overstated. For example, say there is a network adminis-
trator named Bob who defends a certain enterprise network. When
Bob becomes aware of a new Advanced Persistent Threat (APT)
attack that has been active in the wild for a while, he needs to
investigate whether or not his network has been a victim of the
APT and if so, what the damages are. Indeed, the standard defined
in ISO/IEC 27035 includes a five-phase incident management pro-
cess: prepare, identify, assess, respond and learn [26]. In order to
be effective, such standardization must be supported by tools [5].
However, existing tools mainly focus on vulnerability management,
incident management, or security information and event manage-
ment [19,27]. Despite these tools, many routine cyber defense ac-
tivities are still a manual process [5], meaning that defenders can-
not respond to cyber events rapidly. Moreover, the manual process

* Corresponding author.
E-mail address: sxu@uccs.edu (S. Xu).
https://doi.org/10.1016/j.jpdc.2022.01.002
0743-7315/© 2022 Elsevier Inc. All rights reserved.
is often conducted in isolation because enterprises rarely share cy-
ber intelligence with each other. This problem persists despite the
extensive body of work highlighting the importance of sharing cy-
ber threat intelligence [3,5,11,13,41,42]. For example, learning the
attacks that have successfully penetrated into some enterprise “A”
would undoubtedly help another enterprise “B” defend its network
against the same or similar attacks. This observation demonstrates
that the problem of effective cyber security management (CSM) re-
mains largely open.

One main challenge encountered when designing an effective
CSM system is that of ensuring its robustness. For example, a cen-
tralized CSM consists of a single point of failure, which often out-
weighs its performance advantage, especially because CSM itself is
clearly an important target of the attackers. This and other possible
vulnerabilities naturally motivate the use of distributed or decen-
tralized CSM. However, leveraging a classical distributed database
that tolerates crashes for CSM purposes is still problematic because
this technique requires one to trust all participants (i.e., crash fault
tolerant (CFT) [2,44]) but is not resistant to attacks (i.e., Byzantine
faults). This highlights the importance of incorporating Byzantine
Fault-Tolerance (BFT) into a decentralized CSM.

https://doi.org/10.1016/j.jpdc.2022.01.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.01.002&domain=pdf
mailto:sxu@uccs.edu
https://doi.org/10.1016/j.jpdc.2022.01.002

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82
Another priority is the automation of CSM itself because tra-
ditionally CSM-related tasks have been done manually [5], which
incurs delays and is tedious and error-prone. In addition, a CSM
system should offer other properties such as accountability, mean-
ing that the actions of both providers and consumers of cyber
intelligence should be observable by each other in order to main-
tain transparency of intent.

In this paper, we make a significant step towards formalizing
CSM by defining three kinds of CSM functions in relation to cy-
ber intelligence sharing, whereby the participating defenders share
and leverage cyber intelligence for their CSM purposes. Our contri-
butions can be summarized as the follows.

1.1. Our contributions

We make three contributions. First, we initiate the study of ro-
bust and automated CSM in relation to three types of cyber intelli-
gence: (i) newly detected cyber attackers, which may be leveraged
to detect previously unidentified victims; (ii) newly detected vic-
tims, which may be leveraged to detect previously unidentified
attackers; and (iii) new defense capabilities, which may be lever-
aged to detect previously unidentified attacks. We further clas-
sify CSM functions based on the layer from which their useful
intelligence comes: Network-centric CSM (N-CSM), which lever-
ages network-related data for CSM purposes; Tools-centric CSM
(T-CSM), which leverages data collected from cyber defense tools
for CSM purposes; and Application-centric CSM (A-CSM), which
leverages application-specific data for CSM purposes. In order to
organize, store and process these cyber data, we propose the ab-
straction of Annotated Graph Time Series Representation (AGTSR)
and introduce algorithms for realizing these CSM functions.

Second, we propose Blockchain-Based CSM (B2CSM) to achieve
automated and robust CSM. The design of B2CSM raises a num-
ber of challenges. Here three such challenges are highlighted as
follows:

• How to make the proper design choices for the B2CSM system instan-
tiation? The construction of the B2CSM system involves multi-
ple components such as blockchain type, consensus mechanism,
state database etc. We provide concrete analysis and justify our
design choices. For example, as there are three classes of CSM
functions, there is a spectrum of design options (e.g., one chain
for all classes of CSM functions vs. one chain per class of CSM
functions) we can use for setting parameters. We explore the
advantages and disadvantages of each option in terms of com-
plexity, maintenance workload, and flexibility, and decide to use
one chain per class of CSM function.

• How to deal with a large volume of cyber data? The CSM data
(e.g., network traffic) is often stored in large volumes. How-
ever, storing such large data on blockchain directly in the form
of transactions and deploying CSM functions as smart con-
tracts would force users or other smart contracts to parse many
blocks to extract individual transactions and find the relevant
data. This is prohibitively inefficient. We solve this problem
by proposing a fine-grained ledger structure in the underlying
blockchain platform (i.e., Hyperledger Fabric [6]) to efficiently
retrieve large-volume related cyber data, which is split into
chunks and stored in Fabric state database. Note that such a
design essentially takes advantage of the best features of both
blockchain and database (i.e., security vs. performance) [44] by
letting a blockchain act as a security layer for the nodes, so that
they can reach consensus on the cyber data before it is stored
in the state database and can also efficiently and securely re-
trieve cyber data from the ledger (i.e., the state database) via
smart contract.
63
• How to reduce ledger storage costs robustly? Storing cyber data in
the state database results in a whole copy of cyber data on each
full node (i.e., the server that participates in the consensus pro-
tocol) in the blockchain network. To further reduce such a stor-
age cost, we incorporate a Decentralized Storage Network (DSN)
instantiated by InterPlanetary File System (IPFS) [7] so that the
storage of a huge volume of cyber data is delegated to DSN
while each full node only keeps a short reference (i.e., content
identifier returned by IPFS) in state database. However, there are
still some technical challenges to solve in such a hybrid archi-
tecture. For example, how can we cope with loss or tampering
of the cyber data before it is submitted to the network? How
can we ensure that the output of CSM invocations cannot be
manipulated by malicious parties? To handle these problems,
we propose leveraging the techniques proposed in [22] to en-
sure the integrity of the cyber data. Moreover, we ensure the
correctness of CSM invocation results by querying from multiple
full nodes and validating the attached signatures (as elaborated
in Section 3.2.2).

Third, we present a full-stack prototype implementation of
B2CSM and measure its performance. All the CSM functions are
implemented as smart contracts (i.e., “chaincode”, in the ter-
minology of Fabric). The entire suite of fully-distributed net-
work construction scripts and full-stack implementation code
are available online: https://github .com /Blockchain -
World /B2CSM .git. In order to evaluate the efficiency of the
prototype system, we run it on distributed heterogeneous servers
with some real-world cybersecurity data relevant to the three
classes of CSM functions. Experimental results show that B2CSM
is practical. For example, the average query latency conducting a
specific N-CSM function ranges from 81.09 ms to 94.23 ms with
four nodes. We also experiment with seven and ten nodes, which
demonstrate a similar efficiency.

1.2. Related work

CSM related prior studies. Our CSM functions take specified types
of threat intelligence as input. Prior studies in threat intelligence
sharing can be divided into four categories: (i) characterizing the
opportunities and challenges [24,41]; (ii) understanding the legal
and regulatory matters [4,45]; (iii) exploring standardization and
principles [13,17]; and (iv) developing tools [11,13,40]. Our paper
is closely related to the preceding category (iv), but our study is
unique because we formulate the problem of robust and automated
CSM and present a blockchain-based design and implementation.
It is worth mentioning that CSM is different from cyber foren-
sics [33]. This is because forensics is oriented toward certain de-
tails, such as attack attribution and criminal investigation, which
are not critical in all cases of cyber attacks, and can inhibit the
efficient response to active attacks. In contrast, CSM prioritizes ef-
ficiency, which is closer to the aim of incident response.
Other blockchain-based decentralized applications. To the best of
our knowledge, we are the first to investigate the application of
blockchain for the CSM field. This is true despite the existing va-
rieties in which blockchain technology has been leveraged, which
include far more applications than just cryptocurrency and smart
contracts [35,51]. Some of these include: enhancing integrity and
privacy of shared cyber security data [39]; replacing conventional
trusted third parties to ensure fairness for peer-to-peer content
delivery networks [23]; managing public key certificate and revo-
cation status [37]; enhancing the trustworthiness of cryptographic
digital signatures in the presence of compromised private signing
keys [52,53]; facilitating data integrity and data management in
IoT systems [22]; detecting violations of access control policies in
cloud environments [16]; managing data provenance, accountabil-

https://github.com/Blockchain-World/B2CSM.git
https://github.com/Blockchain-World/B2CSM.git

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82
Fig. 1. Illustration of external vs. internal attacker and victim from defender Bob’s
(rather than defender Cindy’s) point of view.

ity and copyright protection [29]; enabling data sharing [39] and
decentralized crowdsourcing services [32].

1.2.1. Paper outline
Section 2 describes CSM model, functions and data structures.

Section 3 presents the design of B2CSM and the security analysis.
Moreover, we introduce the implementation of a B2CSM prototype
and evaluate its performance based on real cyber data. Section 4
discusses the limitations of the present study, and Section 5 con-
cludes the present paper.

2. CSM model, functions and data structures

Terminology. A cyber defender, Bob, manages a set of entities,
which are broadly defined to accommodate computers and other
objects of cybersecurity significance. As illustrated in Fig. 1, we
make the distinction between external entities (i.e., those not man-
aged by Bob but which may be managed by another defender,
Cindy) and internal entities (i.e., those managed by Bob); this ex-
ternal vs. internal distinction is from a specific defender’s point of
view, in this case, Bob’s. An entity can be in one of three states:
victim, attacker, or normal. A victim entity is one that has been
compromised by an external or internal attacker entity; an attacker
entity is one that exhibits malicious behavior; and a normal entity
is one that is neither a victim nor an attacker entity. A normal en-
tity can become a victim entity when it is attacked by an external
or internal attacker entity, and a victim entity can elevate to an
attacker entity.

2.1. CSM model

In the CSM model, a defender Bob, or more precisely his CSM
App (CSMA), leverages some input cyber intelligence to identify
victim and attacker entities, where the input intelligence may be
(i) shared by other defenders or (ii) discovered by some cyber de-
fense tools used by the defender Bob. In what follows, we describe
five kinds of cyber intelligence, three classes of CSM functions, and
a general data structure designed to facilitate these CSM functions.

2.1.1. Input cyber intelligence
As illustrated in Fig. 2, we consider five kinds of input cyber

intelligence, which are prefixed by ‘I-’.

(I-1A) Intelligence that points to some external attackers, possibly
accompanied by the time window during which an external
attacker is active.

(I-1B) Intelligence that points to some internal attackers, which
may have attacked some external victims and been detected
by another defender, or some internal victims and been de-
tected by some cyber defense tools used by Bob.

(I-2A) Intelligence that points to some external victims, which have
been attacked by some internal or external attackers.

(I-2B) Intelligence that points to some internal victims, which have
been attacked by some internal or external attackers. The
64
Fig. 2. CSM model with five kinds of input cyber intelligence and three classes of
CSM functions. The naming scheme is: ‘1’ means attacker, ‘2’ means victim, and ‘3’
means capabilities; ‘A’ means intelligence on external entities and ‘B’ means intelli-
gence on internal entities.

intelligence may be collected, for example, by the leakage
of data specific to the victim (e.g., social security numbers
or passwords) or by a cyber defense tool (e.g., intrusion de-
tection system or anti-malware tool).

(I-3) Intelligence that points to some new defense capabilities,
such as methods for detecting previously undetected attacks
(e.g., 0-day attacks).

2.1.2. An overview of three classes of CSM functions
As depicted in Fig. 2, Bob’s CSMA takes as input some cy-

ber intelligence and the relevant cyber data, uses the CSM func-
tions (specified below) to identify other internal or external at-
tackers/victims, and outputs the resulting intelligence. Bob may
choose to share this output with another defender, say Cindy,
about his internal or external attackers/victims (i.e., input cyber
intelligence I-1A, I-1B, I-2A, I-2B from Cindy’s point of view). To
be specific, we define three classes of CSM functions, as shown in
Fig. 2: (i) Network-centric CSM (N-CSM), which leverages network-
related data and cyber intelligence for CSM purposes; (ii) Tools-
centric CSM (T-CSM), which leverages data collected from cy-
ber defense tools and cyber intelligence for CSM purposes; and
(iii) Application-centric CSM (A-CSM), which leverages application-
specific data and cyber intelligence for CSM purposes. Each class
contains multiple CSM functions, and the core ideas of these func-
tions are described below.

N-CSM. N-CSM functions are centered at examining the input
cyber intelligence against network traffic data, which may be col-
lected at a gateway between the external network (e.g., the Inter-
net) and the internal network (e.g., an enterprise network). Net-
work traffic data can be represented by IP packets and TCP/UDP
flows, which incur different costs on storage. We define the fol-
lowing three N-CSM functions.

(N.1) This function is designed to identify internal victims of some
external attackers, which are given as the input cyber intel-
ligence (i.e., input I-1A). Specifically, at time t′ , Bob is given
cyber intelligence that an external attacker, identifiable by its
IP address, attacker_IP, was active at some point in time in-
terval [t1, t2] where t′ ≥ t2. Bob needs to identify his internal
systems that may have been compromised by the external
attacker in time interval [t1, t2].

(N.2) This function is designed to identify external attackers that
may have caused the compromise of some internal victims
(i.e., input I-2B). Specifically, at time t′ , Bob is given cyber
intelligence that an internal victim, identifiable by victim_IP,
was attacked at some point in time interval [t1, t2] where

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82
t′ ≥ t2. Bob needs to identify the external IP addresses that
contacted victim_IP in time interval [t1, t2].

(N.3) This function is designed to identify potential secondary vic-
tims that may have been attacked before, during or after the
known compromise of some other internal victim (i.e., input
I-2B and/or I-1B). Specifically, at time t′ , Bob is given cyber
intelligence that an internal victim IP address, identifiable by
its IP address, victim_IP, was attacked at some point in time
interval [t1, t2] where t′ ≥ t2. Then, Bob needs to identify
other victims that were contacted by the potential attackers
that may have compromised the given victim_IP during time
interval [t1, t2].

T-CSM. T-CSM functions are centered at cyber defense tools,
such as Network-based Intrusion Detection Systems (NIDSs), Host-
based Intrusion Detection Systems (HIDSs), and anti-malware sys-
tems. These tools often output alerts as indicators of malicious or
suspicious activities. We define the following three T-CSM func-
tions.

(T.1) This function is designed to identify the attack path(s)
through which a known internal victim was compromised (i.e.,
input I-2B). Specifically, at time t′ , Bob is given cyber intelli-
gence that an internal victim, say victim_IP, was compromised
at some point during the time interval [t1, t2] where t′ ≥ t2.
Then, Bob needs to identify the attack path(s) that may have
been leveraged to compromise victim_IP.

(T.2) This function identifies victims of zero-day attacks by lever-
aging a new defense capability (i.e., input I-3). Specifically, at
time t′ , Bob is given cyber intelligence on a new detection
method (e.g., signature) for detecting a previously unknown
zero-day attack. Then, Bob needs to identify the internal
victims that were attacked according to the new detection
method during a past time interval [t1, t2], t′ ≥ t2.

(T.3) This function is designed to identify the cascading damage
caused by a given attacker (i.e., input I-1A or I-1B). Specifi-
cally, at time t′ , Bob is given cyber intelligence that a mali-
cious external or internal entity was active at some point in
time interval [t1, t2] where t′ ≥ t2. Then, Bob needs to iden-
tify the entities that were directly or recursively accessed by
the malicious entity during time interval [t1, t2].

A-CSM. A-CSM functions are centered at specific applications
that are often exploited to wage attacks, such as drive-by down-
loads via web browsers and spear-phishing via email. As examples,
we consider the following three A-CSM functions.

(A.1) This function is designed to identify secondary internal vic-
tims (e.g., browsers or email clients) that have been targeted
by the same attack that succeeded against a known compro-
mised entity (i.e., input I-2B). Specifically, at time t′ , Bob is
given cyber intelligence that an internal entity (i.e., browser
or email user) was compromised at some point in time in-
terval [t1, t2] where t′ ≥ t2. Then, Bob needs to identify other
internal victim entities (i.e., browsers or email users) that
communicated with any of the external attacker (i.e., URLs
or email users) that compromised the internal victim during
time interval [t1, t2].

(A.2) This function is designed to identify internal victims (e.g.,
browsers or email users) of an external attacker (namely in-
put I-1A). Specifically, at time t′ , Bob is given an external
attacker (i.e., URL or email address) that was active at some
point in time interval [t1, t2] where t′ ≥ t2. Then, Bob needs
to identify the other internal victims (i.e., browsers or email
users) that may be compromised because they communi-
cated with the external attacker during time interval [t1, t2].
65
(A.3) This function is designed to identify internal victims that
may be impacted by known attacks against an external vic-
tim (e.g., spoofed URL or email address, namely input I-2A).
Specifically, at time t′ , Bob is given cyber intelligence that an
external victim (i.e., URL or email address) was spoofed to
wage attacks at some point in time interval [t1, t2] where
t′ ≥ t2. Then, Bob needs to identify the external attackers
(i.e., URLs or email addresses) that spoofed the given external
victim during time interval [t1, t2] and the internal victims
(i.e., browsers or email addresses) that communicated with
the external attacker during time interval [t1, t2].

2.1.3. A general CSM data structure
To realize the CSM functions, proper data representations are

needed. We propose a general data structure, known as an Anno-
tated Graph Time Series Representation (AGTSR), by dividing the time
horizon into T + 1 time windows at some resolution (e.g., hour or
day). To reduce the number of notations, we make the following
convention: the default use of t, t1, t2 refers to specific points in
time; we also use the term time window t, t1, t2 to refer to the t-
th, t1-th, and t2-th time window, where 0 ≤ t, t1, t2 ≤ T .

For time window t , we use G(t) = (V (t), E(t), A(t)) to repre-
sent the relevant cyber activities for CSM purposes, where V (t)
is the vertex set with each vertex representing an entity (e.g., IP
address, computer or device), E(t) is the arc set with each arc
representing some communication activity, and A(t) is the annota-
tion set such that A(t) = {Auv(t) : (u, v) ∈ V (t) × V (t)} with Auv(t)
being a set of annotations associated to (u, v) ∈ V (t) × V (t) and
Auv(t).count denotes the number of IP packets or TCP/UDP flows
along an arc (u, v) in time window t . That is, Auv(t).count = 0
means (u, v) /∈ E(t) and Auv(t).count > 0 means (u, v) ∈ E(t), and
count is the number of IP packets or TCP/UDP flows from entity
(e.g., IP address) u to entity v in time window t . The meanings
of annotations in Auv(t) are specific to the class of CSM func-
tions, and will be elaborated below. In principle, G(t) may be
stored as an adjacency matrix or list; for simplicity, we will fo-
cus on the adjacency matrix representation and Auv(t) can be
seen as an extension of the standard adjacency matrix. Our model
can support division of a network into subnets with both intra-
and inter-subnet communications. We can achieve this by ex-
tending G(t) = (V (t), E(t), A(t)) of time window t to Gm(t) =
(V m(t), Em(t), Am(t)), where V m(t) ⊆ V (t) are the nodes belong to
a subnet and formulate a partition of V (t), (u, v) ∈ Em(t) means
u, v ∈ V m(t), and Am

uv means u, v ∈ V m(t). There are also arcs
Em,m′

(t) = {(u, v) : u ∈ V m(t), v ∈ V m′
(t)}. The cybersecurity mean-

ings of these notations are specific to the CSM functions in ques-
tion and thus elaborated later.

Besides, we define [n] = {1, . . . , n}, and use maxt∈[t1,t2] |V (t)|
to denote the maximum number of entities (e.g., computers,
IP addresses, or browsers) during a time window in between
time window t1 and time window t2, namely maxt∈[t1,t2] |V (t)| =
max{|V (t1)|, |V (t1 + 1)|, . . . , |V (t2)|} with 0 ≤ t1 ≤ t2 ≤ T . Simi-
larly, we define that maxt∈[t1,t2] |V m(t)| = max{|V m(t1)|, |V m(t1 +
1)|, . . . , |V m(t2)|}.

2.2. CSM data structures and functions

We now present the three concrete CSM data structures and
functions, and the detailed algorithms are deferred to Appendix A.
Note that all these algorithms are implemented in the smart con-
tract (i.e., chaincode) to facilitate CSM.

2.2.1. N-CSM data structure and functions
For N-CSM, AGTSR can accommodate network communications

such that a node u ∈ V (t) represents a computer, and an arc
(u, v) ∈ E(t) represents the communications between nodes u and

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82
Fig. 3. Data structure for N-CSM.

Fig. 4. Data structure for T-CSM.

v initiated by u. In N-CSM, we are often concerned with bor-
der communications, meaning the communications between the
internal entities and the external entities. In this case, V (t) is
partitioned into V external and V internal , where V external is the set of
external entities (e.g., IP addresses) and V internal is the set of inter-
nal entities. For time window t , there is a G(t) = (V (t), E(t), A(t))
as defined above. Fig. 3 illustrates G(1), G(2), . . .; for example, we
have u2, u3, u4 ∈ V external(1) and v1, v2, v3, v4 ∈ V internal(1) where
count is only illustrated for (u2, v1) ∈ E(1) for a better visual effect.

The N-CSM algorithm details are deferred to Appendix A.1
where Algorithm 1 realizes N-CSM function N.1 by identifying vic-
tims given an attacker; Algorithm 2 realizes N-CSM function N.2 by
identifying potential attackers based on their communications to a
given victim; Algorithm 3 realizes N-CSM function N.3 by identify-
ing secondary victims of the attacker that compromised the input
victim.

2.2.2. T-CSM data structure and functions
For T-CSM, Fig. 4 shows an example network to clearly convey

the ideas. The network has three disjoint subnets: the Internet (i.e.,
the external subnet), the demilitarized zone for external-facing
servers (DMZ), and the local area network (LAN). This suggests that
Bob can use (i) an AGTSR to represent the interactions between
the Internet and the DMZ, or GI−D(t) for short; (ii) an AGTSR
to represent the interactions between the LAN and the Internet,
or GL−I(t) for short; and (iii) an AGTSR to represent the interac-
tions within the DMZ itself, within the LAN itself and between the
border of the DMZ and the LAN, or GD−L(t) for short. Note that
V (t) = V I−D(t) ∪ V L−I(t) ∪ V D−L(t). In T-CSM, the annotation of
an arc is a list of alerts (i.e., Auv(t) = {alerts}). These alerts are trig-
gered by the traffic across each arc, which often corresponds to a
routing path rather than a physical link.

The T-CSM algorithm details are deferred to Appendix A.2
where Algorithm 4 realizes T-CSM function T.1 by inferring the
66
Fig. 5. Data structure for A-CSM.

attack paths to the compromised internal entity; Algorithm 5 re-
alizes T-CSM function T.2 by retrospectively detecting the victims
of a zero-day attack during a past time window prior to discovery
of the zero-day attack; Algorithm 6 realizes T-CSM function T.3 by
identifying the cascading damage of a given attack, specifically, it
determines which entities were targeted by the given attacker, ei-
ther directly or recursively.

2.2.3. A-CSM data structure and functions
For A-CSM, we use the example of web applications, but the

discussion can be adapted to accommodate other applications, e.g.,
email systems. In this example, browsers (or their IP addresses)
are internal entities and URLs are external entities. As illustrated
in Fig. 5, G(t) = (V (t), E(t), A(t)), where V (t) = V app(t) ∪ V URL(t),
E(t) is the arc set such that arc (u, v) ∈ E(t) means browser
u ∈ V app(t) visited URL v ∈ V URL(t) in time window t , each arc
(u, v) ∈ E(t) is annotated with a timestamp ∈ Auv(t), where a value
of −1 means (u, v) /∈ E(t).

The A-CSM algorithm details are deferred to Appendix A.3
where Algorithm 7 realizes A-CSM function A.1 by identify-
ing suspicious internal applications (i.e., potentially compromised
browsers); Algorithm 8 realizes A-CSM function A.2 by identifying
victim browsers given a known malicious URL; Algorithm 9 real-
izes A-CSM function A.3 by identifying victim browsers of spoofed
(e.g., typo-squatted) URLs given the input of an abused URL with
url_id.

3. B2CSM system and evaluation

A straightforward realization of the CSM model depicted in
Fig. 2 would let each defender build a centralized cyber security
management system (mainly for the sake of efficiency) to main-
tain their own cyber data and perform CSM invocation due to
some received threat intelligence. However, such a design is insuf-
ficient due to the considerations that: (i) centralized architectures
typically pose the risk of single-point-of-failure, and therefore a
decentralized system would be preferable to tolerate crash faults;
(ii) when considering a decentralized system, even in the network
of the same enterprise that the defender manages, it is still pos-
sible that some of the servers get corrupted, hence not only crash
fault tolerance (CFT) but also byzantine fault tolerance (BFT) are
needed to construct a robust CSM system; (iii) besides the ro-
bust storage of cyber data, the invocation records (e.g., which party
invoked a CSM function at a certain point in time) are also poten-
tially valuable to realize accountability, and these records should
be tamper-proof against malicious actions; (vi) the decentralized
system is expected to correctly execute some pre-defined oper-
ations, i.e., the CSM functions, in an automated manner instead
of the involvement of manual procedure. To overcome these chal-
lenges, we propose leveraging blockchain to build a decentralized,

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82
Fig. 6. The B2CSM model extending from the CSM model.

automated and robust blockchain-based CSM system, leading to
B2CSM. In what follows, we present the key designs of B2CSM;
instantiate it atop the blockchain platform; analyze its security
properties and evaluate its performance based on real cyber data.

3.1. B2CSM model and architecture

Fig. 6 highlights the B2CSM model extended from the CSM
model by storing cyber data, G(t)’s, in the B2CSM blockchain net-
work and incorporating B2CSM Apps and B2CSM Agents. B2CSM
Apps are the interface for defenders to run CSM functions, by (i)
taking as input some cyber intelligence and identifiers (e.g., a time
frame) of the relevant cyber data and (ii) presenting the output
of the CSM functions to the defender. B2CSM Agents collect cyber
data and write the data to the B2CSM blockchain network.

The B2CSM model described in Fig. 6 lends itself to the B2CSM
architecture depicted in Fig. 7, which is presented from the de-
fenders’ perspective. In this architecture, a defender uses a set of
B2CSM agents to collect cyber data from the enterprise network.
These agents write the collected data into the defender’s B2CSM
blockchain network. The defender interacts with their B2CSM App
to execute CSM functions with some input cyber intelligence. The
CSM functions run in the form of smart contract at full nodes in
the B2CSM blockchain network. The B2CSM middleware acts as an
intermediary between the B2CSM App and the blockchain network.
To provide permissioned access control, the defenders are iden-
tified via a Certificate Authority (CA). These components interact
with each other to form the B2CSM system.

3.2. B2CSM system design and security analysis

3.2.1. Instantiating the architecture as a system
The B2CSM architecture in Fig. 7 can be instantiated into

B2CSM systems in different ways. We now propose a concrete in-
stance by providing needed design choices:

Decision on blockchain type. We propose using the permissioned
blockchain [6] to realize B2CSM due to the following reasons: (i)
CSM needs to authenticate its participants and users because cyber
security management copes with sensitive data; (ii) only parties
who are interested in CSM (e.g., honest defenders share a common
goal of protecting their systems from malicious attacks) need to
participate in, and therefore it is unnecessary to be public to all;
(iii) the participating entities may not fully trust each other, high-
lighting the importance of achieving accountability.

Note that permissioned blockchains can be further divided into
private blockchains, where the full nodes in the blockchain network
67
belong to one enterprise, and consortium blockchains, where the
full nodes are managed by multiple enterprises.

Decision on the number of chains and their types. We propose us-
ing one chain per class of the three classes of CSM functions. The
Fabric channel mechanism offers this service and creates a sepa-
rated “subnet” containing its joined members, its ordering service
nodes, a shared ledger, and the application chaincodes. One-chain-
per-class provides a modular structure for the B2CSM network and
allows for flexible extension of more potential CSM functions. In
B2CSM, we propose two kinds of chains (or channels):

• Private chain/channel for storage: A defender of each enter-
prise can create a private channel to store its own cyber data
and perform different CSM functions, leading to a (permis-
sioned) private B2CSM blockchain.

• Consortium chain/channel for sharing: Defenders can also
jointly create a channel for storing cyber data (as secret
shares [43] or encrypted) and sharing their cyber intelligence
data, leading to a (permissioned) consortium B2CSM blockchain.

In both cases, each channel maintains a unique ledger, which con-
sists of a blockchain for on-chain data storage (as transactions) and
state database for off-chain data storage (as key-value pairs), and
can serve a specific CSM class, namely N-CSM, T-CSM or A-CSM.

Fig. 8 depicts the channel architecture of B2CSM. The defender
of an enterprise can create a private channel by only allowing the
server nodes managed by the defender to join in. Intuitively, the
cyber data of an enterprise is maintained and accessed only by its
own servers, which jointly maintain a distributed ledger. Moreover,
defenders of different enterprises can create a consortium channel
for sharing their cyber intelligence data such as the outputs of CSM
function invocations. Following a general BFT consensus security
model [12], the number of full nodes N in any channel satisfies
N ≥ 3 f + 1, where f is the number of faulty nodes that can be
tolerated.

Decision on the consensus protocol to use. Since our threat model
considers compromised blockchain network nodes, we need to
make B2CSM achieve Byzantine Fault Tolerant (BFT). The Order-
ing Service Nodes (OSNs) in Fabric are external nodes (i.e., rather
than the blockchain’s full nodes) and that the ordering service
only supports Crash Fault-Tolerance (CFT) consensus mechanisms
such as Zookeeper with Kafka or Raft [25]. To achieve BFT, we
propose integrating the work in [46], known as BFT-SMaRt. More-
over, we propose running the ordering service at the full nodes of
the B2CSM blockchain, instead of delegating this service to extra
nodes.

Decision on the state database to use. Fabric supports leveldb and
couchdb as state databases. Although both support key-value stor-
age, couchdb offers rich queries (e.g., the value can be JSON format
whereas leveldb only supports string-based queries). In light of
this, we adopt couchdb as the B2CSM state database and the con-
crete data format is elaborated in Section 3.2.2.

Decision on the locality of the B2CSM middleware. We propose
running the middleware at every B2CSM blockchain full node. The
middleware has multiple sub-functions, such as formatting a de-
fender’s invocation of CSM functions, interacting with the B2CSM
blockchain network, and polishing the output of CSM functions be-
fore returning it to the B2CSM App. These services are important
because (i) different kinds of CSM functions may require different
kinds of data pre-processing, and (ii) the middleware serves as an
intermediate level of abstraction to support extensive functionali-
ties that may emerge in the future.

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82

Fig. 7. Illustration of B2CSM architecture. Each defender has a set of agents for collecting cyber data and writing into the B2CSM blockchain (either via the B2CSM Middleware
or an independent writing module). Each defender runs a B2CSM App, which invokes CSM functions deployed in the smart contract using cyber intelligence from the defender.

Fig. 8. The channel architecture in B2CSM blockchain network. The private and consortium channels can further serve different classes of CSM, i.e., N-CSM, T-CSM or A-CSM.
3.2.2. B2CSM system design
In light of the design choices above, we now present the B2CSM

system design, which contains two main phases: cyber data replica-
tion and CSM function invocation. We elaborate the key challenges
in each phase and the corresponding solutions at a high-level. The
concrete message flows are deferred to the specified appendices.

Phase I: Cyber data replication. This phase allows a defender, Bob,
to robustly store the cyber data via private channels in the B2CSM
blockchain network. Upon system setup, defenders can continu-
ously write collected cyber data to the channel via B2CSM agents,
i.e., the local servers managed by Bob. The key challenge lies in
dealing with a large volume of cyber data in terms of efficient writing,
reading and robust storage. We propose two methods to solve this
challenge and analyze their advantages and disadvantages. Specifi-
cally:

Method 1 (M1): Splitting into chunks with fine-grained ledger
structure. The handling of a large volume of cyber data G(t) re-
quires efficient uploading and retrieval. First, to replicate a large
volume of cyber data to the blockchain network, we propose di-
viding G(t) into small data units and uploading them in parallel.
68
Second, the efficiency of data retrieval largely depends on how the
data units are stored in the B2CSM network. While it is tempt-
ing to store all of the cyber data on the blockchain in the form of
transactions and use smart contracts to point to which blocks con-
tain the relevant data units for what time window, this design will
incur large latency when multiple blocks need to be traversed. Be-
sides, a block may contain data units belonging to different time
windows as the block size is fixed when initializing a channel,
leading to possible retrieval of irrelevant cyber data. This prompts
us to propose a proper ledger structure by extending the Fabric
state database: the blockchain full nodes not only reach consensus
on data units and package them into consecutive blocks, but also
proactively update the state database for later efficient retrieval
purposes.

Fig. 9 depicts the structure of the B2CSM ledger, where the
blockchain stores two kinds of transactions: (i) the transactions
containing the history of cyber data replication (i.e., who sub-
mits which cyber data to the B2CSM blockchain network); (ii) the
transactions containing the history of CSM function invocations for
auditing purposes. The state database stores real cyber data G(t) as

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82

Fig. 9. Illustration of the B2CSM ledger structure with a blockchain and a state database. The state database stores the cyber data units.

Fig. 10. Illustration of the B2CSM ledger structure with a blockchain and a state database. The state database stores content id cid of the cyber data that is returned by IPFS.
shown in Fig. 9, where a large G(t) is divided into multiple data
units. For example, time_window1 consists of two data units that
are respectively keyed by time_window1-0 and time_window1-1.
When defenders make CSM queries, the B2CSM middleware can
invoke the CSM functionalities in the smart contracts, which take
as input the relevant cyber data that is retrieved from the state
database. This fine-grained ledger structure leverages the advan-
tages of both blockchain and database structures [44] to facilitate
blockchain-based applications as they process large volumes of
data.

Method 2 (M2): Integrating with decentralized storage net-
work. An alternative way of handling a large volume of cyber data
is to incorporate a decentralized storage network, instantiated by
IPFS. The key idea lies in storing the real cyber data in the IPFS
while recording a reference, i.e., the returned content id cid of
the cyber data on blockchain. We leverage the (private) IPFS clus-
ter [31] that can be deployed by the defender on its own servers
instead of the public version to store the cyber data since in that
case, the data uploaded to IPFS typically needs to be encrypted,
leading to extra cost for data decryption during retrieval.

One potential issue that may appear in the Fabric-IPFS enabled
hybrid architecture is that a corrupted full node in the B2CSM
blockchain network may maliciously modify or drop the cid, lead-
69
ing to subsequent inaccessibility. To tackle this issue, we leverage
a gossip-based1 diffusion method [22] and propose an augmented
consensus mechanism. At a high-level, the replication procedure
M2 works as follows: (i) a B2CSM agent signs the collected cyber
data G(t) along with the time window t and submitted to f + 1
full nodes in the defender created private B2CSM blockchain chan-
nel; (ii) these f + 1 full nodes execute the gossip procedure so
that all full nodes can cache the cyber data temporarily; (iii) the
leader node in the consensus mechanism submits the cyber data
to IPFS and receives the cid, then starts the BFT consensus, e.g., via
BFT-SMaRt [8] consensus mechanism, with other full nodes, even-
tually all honest full nodes receive the correct cid; (iv) each full
node retrieves the data in IPFS using the cid and verifies the at-
tached signature generated by defender, whereupon it updates the
state database with the key of time window t and the value of
cid, as depicted in Fig. 10, and then clears the locally cached cy-
ber data. Otherwise, if the signature is invalid, a view change (VC)
is triggered to elect a new leader node and restart from the prior

1 A gossip protocol is a procedure where the cyber data G(t) can be routed to
all full nodes by letting each peer node randomly and uniformly select θ neighbor
nodes and forward the data [21].

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82

Listing 1 N-CSM cyber data G(t) example (in state database).
1 {

2 "timeWindow": "20211101", // it means "20211101-20211102" if replication frequency is one day

3 "allDataUnits": [{

4 "dataUnit": "20211101-0",

5 "externalIPs": ["192.168.10.74", "192.168.10.75", "192.168.10.81"],

6 "internalIPs": ["192.168.1.115", "192.168.1.116", "192.168.1.67"],

7 "visitRecords": [["0","1","1"],["1", "1","0"],["0", "0","0"]]

8 }, {

9 "dataUnit": "20211101-1",

10 "externalIPs": ["192.168.10.74", "192.168.10.75", "192.168.10.81"],

11 "internalIPs": ["192.168.1.121", "192.168.1.124", "192.168.1.7"],

12 "visitRecords": [["0","0","1"],["0", "1","1"],["1", "0","0"]] }, ...], ...

13 }

Listing 2 N-CSM cyber intelligence example.
1 {

2 "attackerIP": "192.168.10.74", // an external IP address

3 "timeInterval": "20211101-20211102"

4 }
step (iii). More concrete message flow and remarks are provided in
Appendix B.1.

Comparison of the two methods M1 and M2 . The method M1
stores the cyber data in the state database, which brings the ad-
vantage that the chaincode/smart contract of CSM functions can
conveniently and efficiently retrieve cyber data for function execu-
tion. But for this method, it essentially stores the copy of the cyber
data on each full node, leading to higher storage cost (compared
with M2). For the method M2, the advantage lies in a lower on-
chain storage cost, e.g., consider there are N full nodes in the
channel and the cyber data size is 1 Gb, then the on-chain stor-
age cost for M2 is N × 46 bytes (i.e., the length of a cid) along
with the 1 Gb cyber data that stored in IPFS, while N × 1Gb for
method M1. However, the drawback of M2 becomes clear during
data retrieval. Specifically, the CSM function needs to execute by
taking as input the cyber data and threat intelligence, in that case,
it is not common to let smart contract directly retrieve from IPFS
(since it is external source which may cause non-determinism in
Fabric chaincode). Hence, either new retrieval mechanism needs to
be developed or else the query/invocation latency would become
considerably large (for large cyber data) if the defender downloads
from IPFS and feeds to the chaincode. How to get the best of these
two methods will be an interesting question for future work.

Phase II: CSM functionality invocation. After the cyber data G(t)
is replicated to the Fabric channel (i.e., via method M1) or the
Fabric-IPFS enabled architecture (i.e., via method M2), the de-
fender Bob can invoke CSM functions to identify potential risks
with a given piece of threat intelligence. We defer the concrete
message flow to Appendix B.2 and describe the high-level idea
here: (i) the defender submits the time window t , the CSM type
(such as N-CSM), and the intelligence via their B2CSM App, which
forwards these to multiple full nodes in the private channel; (ii)
these full nodes (i.e., the B2CSM middleware on them) execute the
CSM functions and sign the result; (iii) the B2CSM App aggregates
the results from these full nodes and present to the defender.

Cyber threat intelligence sharing. Besides the two main phases
above in B2CSM system, a potential additional phase is cyber
threat intelligence sharing. Practically sharing cyber intelligence is
done at the defender’s discretion. In B2CSM, if the defender Bob
would like to share cyber intelligence with other defenders, the
following operations can be conducted: (i) the shared cyber intel-
ligence can be encrypted using public key encryption (PKE) so that
the sensitive information contained in the intelligence data can be
kept confidential; (ii) additionally, the cyber intelligence data can
70
be shared in a consortium channel, as discussed in Section 3.2.1,
where only the defenders who would like to share with each other
are involved and can access it. Such a consortium channel-based
sharing mechanism brings an added advantage of accountability
due to the immutability property of blockchain.

Also, in both cases, the defender who shares the (encrypted)
cyber intelligence can sign the shared intelligence, and the result-
ing signature acts as the proof of authenticity of the intelligence
data. As mentioned earlier, guaranteeing the authenticity of the
threat intelligence per se is an orthogonal research problem and
the extensive study of cyber intelligence sharing [3,5,11,13,41,42]
in B2CSM system naturally forms one future work.

3.2.3. A specific CSM functionality invocation demonstrating data flow
Now we utilize a specific CSM function N.1 and the method M1

to demonstrate a concrete data flow. As a pre-execute phase, the
cyber data for N.1 is collected and stored as an adjacency matrix
(as discussed in Section 2.1.3) where each row represents an ex-
ternal IP address, each column is an internal IP address, and the
value (either 1 or 0) in the i-th row and the j-th column indicates
whether such an external IP has visited the internal IP during a
time period or not. The adjacency matrix is parsed in JSON for-
mat and then submitted to the private channel that was created
by the defender in phase I (i.e., Section 3.2.2). Listing 1 illustrates
an example of stored cyber data (units) in state database.

Consider the example of function N.1, which aims to iden-
tify potential victims of an attacker with attackerIP during time
interval [t1, t2]. In this case, the following steps occur: (i) the
defender invokes the B2CSM App with the threat intelligence
shown in Listing 2 and specifies that the channel is N-CSM; (ii)
the App sends a request to multiple full nodes, and on each
node the B2CSM middleware invokes the N.1 function that de-
ployed as chaincode in the N-CSM channel; (iii) the chaincode
retrieves the cyber data from state database and executes the pre-
defined processing functions and outputs the potential victim IP
addresses that have been attacked by attackerIP during time inter-
val [11/01/2021, 11/02/2021]; (iv) the B2CSM middleware signs
the output on behalf of the full node and returns the results along
with signature to the App; (v) the server running the B2CSM App
verifies the signatures for the results received from the full nodes
and shows the defender a set of victims’ IP addresses. Listing 3
further shows an example of the cyber data that stored in IPFS.
Note that such a potentially large JSON file in Listing 3 is split into
chunks of 256 KB and stored on different IPFS peer nodes.

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82

Listing 3 N-CSM cyber data G(t) example (in IPFS).
1 {

2 "timeWindow": "20211101", // it means "20211101-20211102" if replication frequency is one day

3 "cyberData": {

4 "externalIPs": ["192.168.10.74", "192.168.10.75", "192.168.10.81",...],

5 "internalIPs": ["192.168.1.115", "192.168.1.116", "192.168.1.67",...],

6 "visitRecords": [["0","1","1",...],["1", "1","0",...],["0", "0","0",...],...]},

7 "oracle_proof": { "value": "..." },

8 "defender_signature": { "value": "..." },

9 "meta_data": { "timestamp": "...", ... }

10 }
In the case of the crashing of some full nodes in the N-CSM
channel, a defender is notified that those servers are unreach-
able. Furthermore, if the signature verifications of some full nodes
fail, the defender will also be notified that those servers are sus-
pected victims. Consequently, corresponding actions (e.g., replacing
the suspicious full node and adding new servers to the N-CSM
channel) can be taken by the defender. Note that the preceding
discussion similarly applies to other CSM functions.

3.2.4. Security objectives
We define the following five security objectives for B2CSM:
Correctness. The correctness of the outputs of the CSM functions

is assured, with respect to the input cyber intelligence and the
cyber data G(t).

Integrity. The integrity of data, namely the cyber data written
by the B2CSM agents to the B2CSM blockchain network (and DSN
in method M2), and the invocation history of the CSM functions
stored in blockchain, is assured. This means the data cannot be
manipulated without detection, as long as the fraction of compro-
mised nodes in the underlying blockchain is bounded by a certain
upper threshold.

Availability. The availability of the data stored in B2CSM is as-
sured. Specifically, the cyber data written by the B2CSM agents
to the B2CSM blockchain network (and DSN in method M2),
and the invocation history of the CSM functions stored in the
blockchain must remain available as long as the fraction of com-
promised nodes in the underlying blockchain network is bounded
from above by a certain upper threshold.

Consistency. The consistency of the data, namely cyber data
written by the B2CSM agents to the B2CSM blockchain network
(and DSN in method M2), and the invocation history of the CSM
functions stored in blockchain, is assured. This means all of the
honest nodes in a B2CSM channel have the same global view about
the data’s state, as long as the fraction of compromised nodes in
the underlying blockchain platform is bounded by a certain upper
threshold.

Accountability. The B2CSM agents cannot write data into the
blockchain network without record of the writing. Similarly, the
B2CSM Apps cannot invoke CSM functions without record of the
activities.

3.2.5. Threat model
We consider an attacker with the following capabilities: (i) The

attacker can compromise B2CSM blockchain full nodes, by pene-
trating into some bounded fraction of them. The attacker has total
control over these compromised nodes and can coordinate their
activities in an arbitrary (i.e., Byzantine) fashion. (ii) The attacker
can interfere with message deliveries. The attacker can control the
order of message deliveries in the blockchain network. The at-
tacker can arbitrarily delay message deliveries to each computer
(but not forever, see Assumption 2 below) by waging Denial-of-
Service (DoS) or other similar attacks. We consider the attacker
with following standard abilities.
71
Assumption 1. Cryptographic assurance. We make standard as-
sumptions to assure the security of cryptographic schemes (e.g.,
digital signatures). Informally speaking, these assumptions say that
as long as cryptographic keys (if applicable) are not compromised,
cryptographic schemes are secure. That is, in order for the attacker
to compromise a cryptographic assurance, the attacker has to pen-
etrate into a system in question to compromise the cryptographic
keys or cryptographic service (for attaining “oracle” access to a
cryptographic function) [53].

Assumption 2. Communication model. For the B2CSM blockchain
network, we assume the communications between the full nodes
are partially synchronous, meaning that each message is delivered
to the honest nodes within some unknown delay [14]. While in
other steps in the B2CSM system, the communication is considered
synchronous in the sense that the message can only be delayed up
to a-priori known time period �.

Assumption 3. Corruption threshold. For the full nodes in any
channel (since each (private or consortium) channel represents a
separated ledger) of the B2CSM blockchain network, we assume
that no more than one-third of them are compromised simultane-
ously, which is inherent to the adopted Byzantine Fault-Tolerance
(BFT) protocol [46].

We stress that the above assumptions 1, 2 and 3 are standard
with respect to the underlying cryptographic primitives, network
model, and consensus protocols.

3.2.6. Security analysis
Assume that the attacker cannot compromise a defender Bob

or the computers running the B2CSM App since otherwise the
attacker can manipulate the output arbitrarily. Then the security
analysis of B2CSM systems instantiated from the B2CSM architec-
ture is analyzed as follows. Note that the analysis is based on
method M1, while extensive analysis for method M2 is deferred
to Appendix C.

• The correctness states that the outputs of the CSM functions are
reliable. To generate authentic outputs, we can analyze each
step of execution during the whole data flow: (i) the authen-
ticity of the input cyber intelligence is considered correct by
validating the digital signature attached with the intelligence
data, which is generated by the sharer; (ii) the integrity of G(t)
stored in B2CSM blockchain network can be ensured due to
the immutability property of blockchain; (iii) with the authen-
tic input cyber intelligence and integrated cyber data, the CSM
functions can be correctly executed unless the attacker can ma-
nipulate the execution of smart contracts in blockchain, which
is of negligible probability; and (iv) no more than one-third of
the full nodes can be compromised simultaneously, namely as-
sumption 3, which ensures that the defender will receive the
correct outputs by picking the majority consensus (i.e., f + 1
identical results or the majority of 2 f + 1 returned results,
where f is the number of malicious nodes that can be toler-
ated in the blockchain network with N full nodes [22], [12]) of
the invocation results from the full nodes.

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82

Fig. 11. Illustration of the B2CSM prototype system with 4 blockchain peer nodes, on which a private channel is created for one enterprise. Each node also acts as a replica
of the BFT SMaRt-based ordering service and has a couchdb database. For method M2, the B2CSM middleware also contects with IPFS for cyber data writing and retrieval.
The cases for 7 or 10 ordering (or peer) nodes follow the similar architecture and multiple-enterprise architecture can also be easily switched.
• The integrity, availability and consistency objectives are assured
by the inherent properties of blockchain [6], including: (i) secu-
rity of cryptographic primitives such as hash functions and dig-
ital signatures, namely assumption 1; (ii) the distributed archi-
tecture of the blockchain system; (iii) the execution of the con-
sensus mechanism in the partial synchronous network model,
i.e., assumption 2.

• The accountability is ensured as: (i) the data including B2CSM
agents’ public keys and timestamp are stored as transactions
when writing cyber data to the blockchain network; (ii) when
a defender invokes CSM functions, the smart contract is auto-
matically triggered to record such an activity. Due to the afore-
mentioned integrity of blockchain data, all the activities can be
tracked, leading to accountability.

Overall, the CSM invocation can be automatically (due to the
reliable execution of CSM functions in the pre-determined and de-
ployed smart contract) performed without any manual inference,
and the system is robust in the sense of all the aforementioned
guaranteed security properties.

3.3. Analyzing B2CSM system performance

3.3.1. Performance metrics
We propose two CSM-specific performance metrics: Data Repli-

cation Throughput (DRT) and Application Query Latency (AQL). In
particular,

The DRT metric measures the performance in writing data to
the B2CSM blockchain. Since G(t) is often large in volume and
would be split into multiple chunks as in method M1, each with
m rows and n columns, e.g., m = 3 and n = 3 in Listing 1. We
call each chunk a data unit, whose size is limited by the trans-
action size in blockchain network. Let |G(t)| be the size of G(t)
and Treplication be the total time cost for replicating G(t) to the
blockchain network. Then we define DRT = |G(t)|/Treplication .

The AQL metric measures the time interval between when a
defender invokes a CSM function and when the defender receives
the response, namely Tinvocation = Treqf + Tcp + Tresf , where Treqf
is the request formatting time (i.e., the time interval between the
B2CSM middleware receiving a request from a B2CSM App and the
B2CSM middleware submitting the transaction to the blockchain
network), Tcp is the chaincode processing time (i.e., the time in-
terval between the channel starting to execute the CSM function
and the middleware receiving the query result from the blockchain
72
network), and Tresf is the response formatting time (i.e., the time
interval between the middleware receiving the result from the
blockchain network and the middleware sending the result to the
B2CSM App).

The above performance metrics are affected by the follow-
ing block-cutting parameters that are involved when encapsulating
transactions into blocks: batch size (by default, 10 transactions per
block); batch timeout (by default, 2 seconds); and block size (by de-
fault, 512 KBytes). When the batch size or block size are met, or the
batch timeout is reached, the OSNs encapsulate transactions into a
new block. This means that one G(t) might be stored into mul-
tiple blocks. Inspired by [49], we use the following block-cutting
parameters in our experiments (unless explicitly specified other-
wise): block timeout = 2 seconds; block size = 512 KB; batch size
= 30 transactions per block.

3.3.2. A B2CSM prototype system
We implement a prototype system of B2CSM to analyze the

performance. The preceding design choices influence the proto-
type system, and a four-node architecture is depicted in Fig. 11.
The B2CSM prototype system is built on top of a browser-server
architecture. The B2CSM App has two modules: one displays
blockchain-related information, including a dashboard with vari-
ous kinds of information (e.g., B2CSM blockchain’s peer nodes’ IP
addresses, the numbers of blocks and transactions for each chan-
nel). This presents a defender with the B2CSM blockchain’s status
in real-time. The other module offers a defender with a web-based
interface to run the desired CSM functions with input cyber intel-
ligence and receive the response from the CSM functions.

The Fabric software development kit provides the interfaces for
interacting with the blockchain network (e.g., register users, install
chaincode, instantiate chaincode, invoke transactions, and query
ledgers). A Fabric client is instantiated when the defender initiates
communication with the B2CSM blockchain network. This client
only needs to be instantiated once, and subsequent sessions with
the blockchain network can reuse it.

3.3.3. Experiments design and performance evaluation
We conduct experiments with the prototype system involving

(as an example) one defender or enterprise, denoted by ent1. The
defender has a range of CSMAs responsible for writing cyber data
to the B2CSM blockchain network. The blockchain consists of four
peer nodes, denoted by 0.peer.ent1, 1.peer.ent1 and so on. These
peer nodes are the full nodes for the B2CSM blockchain. There are

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82

Fig. 12. B2CSM’s DRTCSM in different CSM experiments (averaged over 5 independent runs).
four couchdb databases: couchdb_peer0_ent1, couchdb_peer1_ent1,
etc. Each couchdb state database is connected with one peer node
for recording its current world state.

There are four ordering nodes: 0.orderer, 1.orderer, 2.orderer,
and 3.orderer, which act as the replicas for BFT SMaRt-based or-
dering service and it is assured that as long as the fraction of
malicious nodes does not exceed 1/3 (i.e., 1 when there are 4 full
nodes), the ordering service is secure. We also conduct the exper-
iment on 7 (tolerating 2 faulty nodes) and 10 (tolerating 3 faulty
nodes) ordering nodes that reside on peer nodes. There are three
front-ends: 1000.frontends (for N-CSM), 2000.frontends (for T-CSM),
and 3000.frontends (for A-CSM). These front-end nodes are respon-
sible for (i) relaying the transactions that are issued by the B2CSM
clients to the consensus protocol and (ii) forwarding the blocks
that are generated by the ordering nodes to peer nodes.

It is worth pointing out that the above architecture can be
readily tuned to build a consortium blockchain network by re-
running the network setup with changed configuration file such
that, e.g., the peer nodes’ names would change from 0.peer.ent1,
1.peer.ent1, 2.peer.ent1, 3.peer.ent1 to 0.peer.ent1, 0.peer.ent2, 0.peer.
ent3, 0.peer.ent4 respectively and so do other service components
such as ordering nodes, and then letting these components join in
the same channel that a defender creates.

The hardware for conducting our experiments is a small-scale
cluster of four Virtual Machines (VMs) residing on two hetero-
geneous servers, representing four nodes to formulate a private
B2CSM blockchain. One server is a Dell PowerEdge R740, which is
equipped with 2 Intel(R) Xeon(R) CPU Silver 4114 processors (with
13.75 MB L3 cache and 20 cores of 2.2 GHz for each processor),
256 GB (16 slots × 16 GB/slot) 2400 MHz DDR4 RDIMM mem-
ory, and an 8 TB (8 slots × 1 TB/slot) 2.5 inch SATA hard drive.
The other server is a Dell Precision Rack 7910, which is equipped
with 2 Intel(R) Xeon(R) CPU E5-2630 v3 processors (with 15 MB
cache and 6 cores of 2.4 GHz for each processor), 16 GB 2133 MHz
DDR4 RDIMM ECC memory, and a 256 GB 2.5 inch SATA solid state
drive. The four VMs have the same configuration of 8 vCPUs, 24 GB
memory and 800 GB hard drive and are connected via a Local Area
Network (LAN). The operating system in each VM is Ubuntu 16.04
(64-bit) with kernel version 4.15. The Fabric version is 1.2, the Java
version is 1.8.0_211, and the golang version is 1.11.10.

3.3.4. B2CSM performance based on experiments with real-world
datasets

We now evaluate CSM-specific performance in DRT and AQL
using real cyber data. In N-CSM experiments, we utilize a dataset
collected from a honeypot during 7 days, and the time resolution
is days (i.e., each day is a time interval). In T-CSM experiments,
we use a dataset collected by the USMA team from the 2017 CDX
Competition [38], as if it were collected at a production enter-
prise network, which indeed instantiates the model highlighted in
Fig. 4. As this dataset does not have ground truth tags, for our
experimental purposes, we replay the traffic using a popular open-
73
sourced intrusion detection system, Suricata [47], with a popular,
free ruleset referred to as Emerging Threats [15]. We store Suri-
cata’s alerts in an AGTSR G(t) for time window t , where nodes
represent the source and destination IP addresses of each attack.
In A-CSM experiments, we consider the example of a defender
recording how an enterprise’s browsers have accessed the exter-
nal URLs. In the simplest case, the cyber data is stored in the form
(browser, U RL, timestamp), meaning that browser accessed the
U RL at the time given by timestamp. Our experiments employ the
Georgia Tech data received from [48] over the period of 2/1/2019-
2/6/2019. The data contains mappings between malware instances,
which are treated as browser applications for our purpose, and the
external URLs. The data is pre-processed into a bipartite AGTSR
over the time horizon of T = 6 days.

Figures (12a), (12b), and (12c) plot B2CSM’s cyber data repli-
cation throughput (denoted by DRTCSM) using the real-world
datasets mentioned above. We observe that the throughput varies
with CSM scenarios. The throughput of T-CSM is significantly dif-
ferent from those of N-CSM and A-CSM. This is caused by the fact
that the T-CSM data is quite different from the N-CSM and A-CSM
data as follows. The T-CSM data volume is large and the volumes
of data units vary substantially where some data units contain
more empty elements than others (recalling that T-CSM data is
generated from network traffic); in contrast, N-CSM data and A-
CSM data are uniformly distributed (i.e., data units are about the
same size). This explains why T-CSM has a lower throughput. From
the throughput, we observe that after the transaction arrival rate
exceeds 4, the throughput stays stable, especially for N-CSM and
A-CSM; this may be caused by the limited computing resources on
the full nodes in our experiments. In T-CSM, we observe an “ab-
normal” throughput at transaction arrival rate 4 and data unit of
4 × 4 (i.e., 102 KBytes per unit); this may be caused by the limited
computing resources at the full nodes and the cumulative effect of
non-uniform distribution in the units’ data volumes.

Figures (13a), (13b), and (13c) plot B2CSM’s AQL using the
real-world datasets mentioned above. We observe the following:
(i) for the request formatting time, it takes about 1.4 seconds for
the first invocation of a CSM function, but much smaller time for
subsequent invocations. This is because the former requires us to
initialize a (one-time) Fabric client object on behalf of the B2CSM
App before connecting to the blockchain network; whereas, the
latter can simply reuse the object created by the former. (ii) for
the chaincode processing time, the time cost varies for different
invocations of CSM functions. (iii) the response time is relatively
stable (i.e., varies only slightly).

Table 1 further presents the break-down of the latency time,
where T 1

reqf is the request formatting time when a CSM function
is invoked for the first time by a B2CSM App and T 2

reqf is the request
formatting time after the initial invocation of a CSM function. We
highlight that the former time costs T 1

reqf is only one-time even
though it is relatively longer. Besides, the chaincode processing

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82

Fig. 13. B2CSM’s AQL in different CSM cases (averaged over 5 independent runs).

Fig. 14. B2CSM’s DRTbc with different number of orderers (averaged over 5 independent runs).
Table 1
B2CSM’s application query latency (unit: ms).

CSM classes CSM functions T 1
reqf T 2

reqf Tcp Tresf

N-CSM N.1 1321.11 0.17 69.18 23.47
N.2 1265.16 0.18 57.6 23.49
N.3 1329.34 0.17 75.86 18.37

T-CSM T.1 1420.92 0.19 504.27 52.81
T.2 1317.57 0.16 120.13 46.92
T.3 1327.26 0.17 279.63 72.66

A-CSM A.1 1336.33 0.21 28.92 28.14
A.2 1287.17 0.19 27.51 24.23
A.3 1324.84 0.17 30.33 30.62

time depends on the smart contract complexity (i.e., the complex-
ity of a CSM function). Finally, the response formatting time Tresf

is bigger than the request formatting time T 2
reqf when disregarding

object-creating time during the first invocation of a CSM function;
this is because each full node needs to sign the query results be-
fore sending them back to the B2CSM App. In summary, we have
the following conclusion: The response delay is mainly due to: (i) the
creation of a Hyperledger Fabric client object corresponding to a CSM
function invoked from a B2CSM App for the first time; and (ii) the spe-
cific chaincode execution of CSM functions. Reducing these time costs can
correspondingly improve the response time.

Scalability with varied number of nodes. Figures (14a), (14b),
and (14c) plot the throughput (denoted by DRTbc since it is re-
lated to blockchain itself instead of specific CSM class) of replicat-
ing some general data (in the form of strings) such as (a batch
of) content ids (cids2) to the blockchain network with 4 orderers
(tolerating 1 faulty node), 7 orderers (tolerating 2 faulty nodes)

2 We use cids here for all experiments since we are now examining the influence
on the number of nodes, not data type; also, as we also consider that the cyber
data to be replicated to IPFS, and only the returned content ids are stored in B2CSM
blockchain network, the cyber data type (i.e., N-CSM, T-CSM or A-CSM) would not
impact writing throughput to blockchain.
74
and 10 orderers (tolerating 3 faulty nodes). Note that the ordering
service is deployed on the peer nodes without delegating to ex-
tra nodes. Each transaction submitted to the blockchain network
contains various numbers of content ids as payloads, which yields
different transaction sizes and updates the state database via smart
contract. The transaction arrival rate shows how many transactions
are simultaneously submitted via multi-threads. Note that if we
examine one specific CSM class, e.g., N-CSM, which possesses the
same cyber data format, then the throughput DRTCSM follows the
same pattern with DRTbc with respect to various number of or-
derer (or peer) nodes.

From the throughput DRTbc , we have the following obser-
vations: (i) increasing the transaction size, namely incorporating
more cids in a transaction, can significantly improve the through-
put. However, the transaction in blockchain network has size limit
for the sake of communication efficiency, e.g., once the payload
size exceeds about 105 KB in our testing, the replication usually
fails; (ii) with increased number of orderer nodes that can toler-
ate more faulty nodes, the throughput is slightly decreased. This
is reasonable since more orderer nodes reaching consensus would
cause more communication latency; (iii) the throughput can reach
around 700 KB/s (or higher with more engineering optimizations)
for replicating content ids to blockchain network. Though such a
throughput is relatively slower than a distributed database-enabled
system, e.g., the throughput for HBase is about 5 MB/s [1], yet the
advantage lies in the robustness assurance, as characterized by the
security properties analyzed in Section 3.2.6.

4. Limitations and future extensions

As the first step towards a fully automated and robust cyber
security management system, the present study has several lim-
itations which need to be addressed in future studies. First, the
presented CSM classes (i.e., N-CSM, T-CSM and A-CSM) collectively
do not yet cover all possible CSM functions. Future research needs
to identify other CSM functions, which can be readily plugged into
our proposed B2CSM system. Second, in N-CSM, the IP addresses

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82
are used to identify attackers or victims; similarly, in A-CSM, URLs
are used to identify potential victims. These identifiers may be
easily to manipulate; for example, IP addresses may not be reli-
able when they can be spoofed or when attackers use anonymous
communication tools. Hence, it is important to investigate more re-
liable identifiers. Third, the current design of B2CSM assumes that
a piece of input cyber intelligence that is shared by other defend-
ers is correct as long as the associated digital signature is valid. It
is a challenging open problem to ensure the authenticity of cyber
threat intelligence, especially when some defenders may have been
compromised. Fourth, it would be useful to develop a visualization
system to present the results of B2CSM. Fifth, it is of interest to in-
tegrate machine learning (as verifiable off-chain computation) with
the smart contract execution to enhance the CSM functions.

5. Conclusion

In this work, we initiated the study of automated and ro-
bust cyber security management (CSM). This includes the formula-
tion of three classes of CSM functions in relation to cyber threat
intelligence sharing and a detailed description of the design of
blockchain-based automated and robust CSM (B2CSM). We pre-
sented the implementation of a prototype B2CSM system. Exper-
imental results based on real cyber datasets show that our system
is useful in practice. We hope the limitations of our study will in-
spire more studies on this important problem.

CRediT authorship contribution statement

Songlin He: Investigation, Validation, Visualization, Writing –
original draft, Writing – review & editing. Eric Ficke: Data curation,
Methodology, Writing – original draft. Mir Mehedi Ahsan Pritom:
Investigation, Validation. Huashan Chen: Data curation, Methodol-
ogy, Software, Visualization. Qiang Tang: Conceptualization, Super-
vision, Visualization, Writing – original draft, Writing – review &
editing. Qian Chen: Investigation, Validation, Visualization. Marcus
Pendleton: Investigation, Validation. Laurent Njilla: Investigation,
Validation. Shouhuai Xu: Conceptualization, Methodology, Super-
vision, Visualization, Writing – original draft, Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

We thank the anonymous reviewers for their constructive
comments. This work was supported in part by AFRL Grant
#FA8750-19-1-0019, ARO Grant #W911NF-17-1-0566, and NSF
Grant #1814825. Approved for Public Release; Distribution Unlim-
ited. Case Number AFRL-2022-0399. Dated 28 Jan 2022.

Appendix A. CSM algorithms

A.1. N-CSM algorithms

Algorithm 1 realizes N-CSM function N.1 by identifying victims.
The algorithm considers each time window within a given time
interval [t1, t2], checking each arc originating from the attacker to
identify the entities that were accessed by the attacker. The query
returns a list of all such entities. The algorithm has a time com-
plexity O((t2 − t1 + 1) · maxt∈[t1,t2] |V internal(t)|), where (t2 − t1 + 1)

indicates the number of time windows that are considered.
75
Algorithm 1 N-CSM function N.1 (identifying victims).
Input: attacker, T , G(t) = (V (t) = V internal(t) ∪ V external(t), E(t), A(t)) for t ∈ [t1, t2]
with 0 ≤ t1 ≤ t2 ≤ T
Output: 〈t, victims(t)〉 for t ∈ [t1, t2]
1: for t ∈ [t1, t2] do
2: if attacker ∈ V external(t) then
3: victims(t) ← ∅;
4: for v ∈ V internal(t) do
 Check victims
5: if Aattacker,v (t).count > 0 then
6: victims(t) ← victims(t) ∪ {v};
7: return victims(t) for t ∈ [t1, t2]

Algorithm 2 N-CSM function N.2 (identifying potential attackers).
Input: victim_IP, T , G(t) = (V (t) = V internal(t) ∪ V external(t), E(t), A(t)) for t ∈ [t1, t2]
with 0 ≤ t1 ≤ t2 ≤ T
Output: 〈t, attackers(t)〉 for t ∈ [t1, t2]
1: for t ∈ [t1, t2] do
2: if victim_IP ∈ V internal(t) then
3: attackers(t) ← ∅;
4: for a ∈ V external(t) do
 Check attackers
5: if (a, victim_IP) ∈ E(t) then
6: attackers(t) ← attackers(t) ∪ {a};
7: return attackers(t) for t ∈ [t1, t2]

Algorithm 3 N-CSM function N.3 (identifying extended victims).
Input: victim_IP, T , G(t) = (V (t) = V internal(t) ∪ V external(t), E(t), A(t)) for t ∈ [t1, t2]
with 0 ≤ t1 ≤ t2 ≤ T
Output: 〈t, potential_victims(t)〉 for t ∈ [t1, t2]

1: for t ∈ [t1, t2] do
2: potential_victims(t) ← ∅;
3: if victim_IP ∈ V internal(t) then
4: tmp_attackers ← ∅;
5: for u ∈ V external(t) do
6: if Au,victim_IP(t).count > 0 then
7: tmp_attackers(t) ← tmp_attackers(t) ∪ {u};
 u accessed victim_IP

8: for u ∈ tmp_attackers(t) do
9: for v ∈ V internal(t) do

10: if Au,v (t).count > 0 then
11: potential_victims(t) ← potential_victims(t) ∪ {v};
 u accessed v and

may have compromised it
12: return potential_victims(t) for t ∈ [t1, t2]

Algorithm 2 realizes N-CSM function N.2 by identifying po-
tential attackers based on their communications to a given vic-
tim. The algorithm considers each time window within the time
interval [t1, t2], checking which attacker entities tried to access
the given victim entity. The algorithm has a time complexity
O((t2 − t1 + 1) · maxt∈[t1,t2] |V external(t)|).

Algorithm 3 realizes N-CSM function N.3 by identifying po-
tential victims that may be attacked by the attacker that caused
the compromise of the input victim. The algorithm uses Al-
gorithm 2 to compute the potential external attackers, which
are then used to identify the other internal entities that may
have been compromised by the potential attackers. The algorithm
has a time complexity O((t2 − t1 + 1) · maxt∈[t1,t2] |V internal(t)| ·
maxt∈[t1,t2] |V external(t)|).

A.2. T-CSM algorithms

Algorithm 4 realizes T-CSM function T.1 by inferring the attack
paths to the compromised internal entity (e.g., computer or IP ad-
dress, namely input I-2B) in time interval [t1, t2]. The algorithm
creates a tree of potential attackers from the given compromised
internal entity. The tree grows according to the relevant network
activities, and adds new nodes when new attackers are identi-
fied. The resulting tree structure contains the target as the root,
compromised internal entities as internal nodes, and all possible
attackers as the leaves. Since the given compromised entity be-
longs to the internal LAN, the algorithm’s search space originates
in GD−L(t′) and branches out within the network until all entities

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82
Algorithm 4 T-CSM function T.1 (inferring attack paths).
Input: Victim_IP, T , G(t) = (GI−D(t), GD−L(t), GL−I(t)) for t ∈ [t1, t2] with 0 ≤ t1 ≤
t2 ≤ T
Output: Attack_Paths = (V A P , E A P , A A P)

1: V A P ← {Victim_IP}; E A P ← ∅; A A P ← ∅;
2: for t = t2 downto t1 do
3: Node_Queue ← New FIFO;
4: while Node_Queue is not empty do
 Conduct BFT
5: for Vertex v ∈ V A P do
6: Node_Queue.enqueue(v);
7: Searched_Nodes ← ∅; Current_Node ← Node_Queue.dequeue();
8: if Current_Node ∈ V D−L(t) then
9: for Vertex v ∈ V D−L(t) do

10: if AD−L
v,Current_Node(t).alerts �= ∅ then

11: if v /∈ V A P then
12: V A P ← V A P ∪ {v};
13: for Vertex v ′ ∈ V A P do
 Initialize empty arcs to each existing nodes
14: A A P

v,v ′ .alerts ← ∅; A A P
v ′,v .alerts ← ∅;

15: A A P
v,Current_Node.alerts ← A A P

v,Current_Node.alerts ∪ AD−L
v,Current_Node(t).alerts;

16: if v /∈ Searched_Nodes ∪ Node_Queue then
17: Node_Queue.enqueue(v);
18: Searched_Nodes ← Searched_Nodes ∪ Current_Node;
19: for sub ∈ {I− D, L− I} do
20: for Vertex v ∈ V A P do
21: if v ∈ V sub(t) then
22: for Vertex v ′ ∈ V sub(t) do
23: if Asubv ′,v (t).alerts �= ∅ then

24: if v ′ /∈ V A P then
25: V A P ← V A P ∪ {v ′};
26: for Vertex v̂ ∈ V A P do
 Initialize empty arcs to existing nodes
27: A A P

v̂,v ′ .alerts ← ∅; A A P
v ′,v̂

.alerts ← ∅;

28: A A P
v ′,v .alerts ← A A P

v ′,v .alerts ∪ Asubv ′,v (t).alerts;

29: return Attack_Paths = (V A P , E A P , A A P)

Algorithm 5 T-CSM function T.2 (identifying victims of zero-day
attacks).
Input: Attack_Signature, T , G(t) = {GI−D(t), GD−L(t), G L−I (t)} for t ∈ [t1, t2] with
0 ≤ t1 ≤ t2 ≤ T
Output: 〈t, Matches(t)〉 where t ∈ [t1, t2]
1: Matches ← New linked list of empty lists
2: for t ∈ [t1, t2] do
3: for sub ∈ {I− D(t), D− L(t), L − I(t)} do
4: for Vertex v ∈ V sub(t) do
5: for Vertex v ′ ∈ V sub(t) do
6: if Attack_Signature ⊆ Asubv,v ′ (t).alerts then
7: Matches(t) ← Matches(t) ∪ {(v, v ′)}
8: return Matches(t) for t ∈ [t1, t2]

have been considered. Once the relevant GD−L(·)’s have been ex-
hausted, the algorithm checks both GI−D(·) and GL−I(·) to identify
potential external attackers. The algorithm has a time complexity
O((t2 − t1 + 1) · ((maxt∈[t1,t2] |V D−L(t)|)2 + maxt∈[t1,t2] |V I−D(t)| +
maxt∈[t1,t2] |V L−I(t)|) · maxt∈[t1,t2] |V (t)|).

Algorithm 5 realizes T-CSM function T.2 by retrospectively de-
tecting victims of a zero-day attack during the past time windows
prior to discovery of the zero-day attack (i.e., input I-3). The cyber
intelligence may come in the form of an alert sequence from ei-
ther an IDS’ output or a previously unexplained anomaly. In either
case, the defender needs to look at all previous IDS alerts to find
matches. For this purpose, the algorithm traces back over the past
time windows in between t1 and t2, by looking at each IDS alert
in the set of arc annotations. The algorithm has a time complexity
O((t2 − t1 + 1) · ((maxt∈[t1,t2] |V D−L(t)|)2 + maxt∈[t1,t2] |V I−D(t)| +
maxt∈[t1,t2] |V L−I(t)|) · maxt∈[t1,t2] |V |(t)).

Algorithm 6 realizes T-CSM function T.3 by identifying the cas-
cading damage of a given attacker (i.e., input I-1A or I-1B). The
algorithm determines which entities were targeted by the given
attacker, either directly or recursively. The algorithm has a time
complexity O(t2 − t1 + 1 · maxt∈[t1,t2] |V (t)|2).
76
Algorithm 6 T-CSM function T.3 (identifying cascading damage).
Input: Attacker_IP, T , G(t) = (GI−D(t), GD−L(t), G L−I (t)) for t ∈ [t1, t2] with 0 ≤
t1 ≤ t2 ≤ T
Output: Damage_Graph = (V DG , E DG)

1: V DG ← {Attacker_IP}; E DG ← ∅; ADG ← ∅;
2: for t ∈ [t1, t2] do
3: for sub ∈ {I− D, L− I} do
 Check arcs which come from the Internet
4: if Attacker_IP ∈ V sub(t) then
5: for Vertex v ∈ V sub(t) do
6: if AsubAttacker_IP,v (t).alerts �= ∅ then

7: if v /∈ VDG then
8: V DG ← V DG ∪ {v}
9: for Vertex v ′ ∈ V DG do
 Initialize empty arcs to existing nodes

10: ADG
v,v ′ .alerts ← ∅; ADG

v ′,v .alerts ← ∅;

11: ADG
Attacker_IP,v .alerts ← ADG

Attacker_IP,v .alerts ∪ AsubAttacker_IP,v (t).alerts

12: for Vertex v ∈ V DG do
13: Node_Queue.enqueue(v)

14: Searched_Nodes ← ∅
15: while Node_Queue is not empty do
 Conduct BFT
16: Current_Node ← Node_Queue.dequeue()

17: if Current_Node ∈ V D−L(t) then
18: for Vertex v ∈ V D−L(t) do
19: if AD−L

Current_Node,v (t).alerts �= ∅ then

20: if v /∈ VDG then
21: V DG ← V DG ∪ {v}
22: for Vertex v ′ ∈ V DG do
 Initialize empty arcs to each existing node
23: ADG

v,v ′ .alerts ← ∅
24: ADG

v ′,v .alerts ← ∅
25: ADG

Current_Node,v .alerts ← ADG
Current_Node,v .alerts ∪ AD−L

Current_Node,v (t).alerts
26: if v /∈ Searched_Nodes ∪ Node_Queue then
27: Node_Queue.enqueue(v)

28: Searched_Nodes ← Searched_Nodes ∪ Current_Node
29: return Damage_Graph = (V DG , E DG , ADG)

Algorithm 7 A-CSM function A.1 (identifying compromised
browsers).
Input: app_id, T , G(t) for t ∈ [t1, t2] and 0 ≤ t1 ≤ t2 ≤ T
Output: 〈t, suspicious_app(t)〉 for t ∈ [t1, t2]

1: for t ∈ [t1, t2] do
2: suspicious_app(t) ← ∅
3: temp_URL_set ← ∅
4: for v ∈ V URL(t) do
5: if (app_id, v) ∈ E(t) then
6: temp_URL_set(t) ← temp_URL_set(t) ∪ {v}
 v was accessed by app_id

7: for v ∈ temp_URL_set(t) do
8: for u ∈ V app(t) do
9: if (u, v) ∈ E(t) then

10: suspicious_app(t) ← suspicious_app(t) ∪ {v}
 app u accessed URL v
and is therefore suspicious

11: return 〈t, suspicious_app(t)〉 for t ∈ [t1, t2]

Algorithm 8 A-CSM function A.2 (identifying victims of a malicious
URL).
Input: url_id, T , G(t) for t ∈ [t1, t2] and 0 ≤ t1 ≤ t2 ≤ T
Output: 〈t, victim_apps(t)〉 for t ∈ [t1, t2]
1: for t ∈ [t1, t2] do
2: victim_apps(t) ← ∅
3: for u ∈ V app(t) do
4: if E(t)[u, url_id] �= −1 then
5: victim_apps(t) ← victim_apps(t) ∪ {u}
 Application u accessed url_id

6: return 〈t, victim_apps(t)〉 for t ∈ [t1, t2]

A.3. A-CSM algorithms

Algorithm 7 realizes A-CSM function A.1 by identifying suspi-
cious internal applications (i.e., potentially compromised browsers).
The input to the algorithm is a browser as an internal victim (i.e.,
input I-2B). The output is a set of compromised browsers (internal
victims) that have accessed any URLs visited by the given compro-
mised browser during time interval [t1, t2]. The time complexity
O((t2 − t1 + 1) · maxt |V app(t)| · maxt |V URL(t)|).

Algorithm 8 realizes A-CSM function A.2 by identifying vic-
tim browsers. The input to the algorithm is a known malicious
URL (i.e., input I-1A). The output is the set of browsers (inter-

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82
Algorithm 9 A-CSM function A.3 (identifying victim URLs and ap-
plications of spoofed URLs).
Input: url_id, T , τdistance , G(t) for t ∈ [t1, t2] with 0 ≤ t1 ≤ t2 ≤ T
Output: 〈t, spoofed_urls(t), victim_apps(t)〉 for t ∈ [t1, t2]

1: for t ∈ [t1, t2] do
2: spoofed_urls(t) ← ∅; victim_apps(t) ← ∅
3: for v ∈ V URL(t) do
4: if 0 <EDIT_DISTANCE(v, url_id) ≤ τdistance then
 v spoofed the given URL

url_id
5: spoofed_urls(t) ← spoofed_urls(t) ∪ {v}
6: for v ∈ spoofed_urls(t) do
7: for u ∈ V app(t) do
8: if (u, v) ∈ E(t) then
9: victim_apps(t) ← victim_apps(t) ∪ {u}

10: return 〈t, spoofed_urls(t), victim_apps(t)〉, t ∈ [t1, t2]

Algorithm 10 EDIT_DISTANCE(url1, url2) [34,50].
Input: url1, url2
Output: total_distance (edit distance between url1 and url2)

1: domain1 ← Extracting_domain(url1)

2: domain2 ← Extracting_domain(url2)
 extracting components; e.g., ‘google’
and ‘com’ for google.com

3: compo1 ← Extracting_compo(domain1)

4: compo2 ← Extracting_compo(domain2)

5: MAX ← max(|compo1|, |compo2|)
6: MIN ← min(|compo1|, |compo2|)
7: total_distance ← 0
8: for i ← 0 to MIN − 1 do
9: if |compo1| >|compo2| then

10: distance ← Levenshtein(compo1[MAX − i], compo2[MIN − i])
11: else
12: distance ← Levenshtein(compo2[MAX − i], compo1[MIN − i])
13: total_distance ← total_distance + distance
14: return total_distance

nal victims) that accessed the malicious URL during time inter-
val [t1, t2]. The algorithm has a time complexity O((t2 − t1 + 1) ·
maxt |V app(t)|), where maxt |V app(t)| is the maximum number of
browsers that accessed some URLs during a time window.

Algorithm 9 realizes A-CSM function A.3 by identifying victim
browsers of spoofed (e.g., typo-squatted) URLs. The input to the
algorithm is an abused URL url_id (i.e., input I-2A). The output is
the set of possibly spoofed URLs, denoted by spoofed_urls(t), and
the set of potential victim browsers, denoted by victim_apps(t),
for t ∈ [t1, t2]. Lines 3-7 of Algorithm 9 find each of the spoofed
URLs v ∈ V URL(t) that has an edit distance smaller than a given
threshold τ_distance, where edit distance is computed using Al-
gorithm 10 (which is a variant of the Levenshtein distance al-
gorithm). Lines 1-2 of Algorithm 10 extract the domain names
from url_1 and url_2. Lines 3-4 create the array of components
(i.e., the components separated by the ‘.’ character) for each of
domain names. Lines 5-6 determine the maximum and mini-
mum lengths of the component arrays respectively. Lines 8-16
compute the edit distance for each components of component1
and component2 starting from the last component (usually top-
level domain names such as ‘.com’ or ‘.net’ are the last compo-
nents) and sum the edit distances of individual components to
get the total_distance between domain2 and domain2 . For example,
consider url1 = “mail.google.com/contact.php” and url2
= “mali.g00gle.com/home.php.” We define their edit dis-
tance as the edit distance between domain1 = mail.google.com
and domain2 = mali.g00gle.com. More specifically, it is the
sum of the edit distance between components mail and mali,
the edit distance between components google and g00gle,
and the edit distance between components com and com respec-
tively. Lines 9-15 of Algorithm 9 identify all the victim browsers
that visited any of the spoofed URLs in set spoof ed_urls(t). Algo-
rithm 9 has a time complexity O((t2 − t1 + 1) · maxt |V app(t)| ·
maxt |V URL(t)|).
77
Fig. B.1. The B2CSM model extending from the CSM model using method M2.

Appendix B. B2CSM system design in Fabric-IPFS enabled
architecture

Here we present the concrete message flow of B2CSM system
in the Hyperledger Fabric and IPFS enabled architecture, i.e., the
method M2. Fig. B.1 highlights the updated B2CSM model, which
lends itself to the architecture shown in Fig. B.2. The notations are
provided in Table B.1 for convenience of reference. First we intro-
duce the cryptographic primitive of digital signature for the ease
of later description.

Digital signature. We consider an existential unforgeability
under chosen message attack (EU-CMA) secure digital signature
scheme [18] SIG consisting of a tuple of algorithms (KeyGen, Sign,
Verify) where:

• SIG.KeyGen(λ) → (pk, sk). The key generation algorithm takes
as input the security parameter λ and outputs a pair of public
key pk and secret key sk.

• SIG.Sign(sk, m) → σ . The signing algorithm takes as input the
secret key sk and the message m and produces the signature σ .

• SIG.Verify(pk, m, σ) → {0, 1}. This deterministic verification al-
gorithm takes as input the public key pk, the message m
and the signature σ and outputs a boolean 1 or 0 indicating
whether σ is valid on m relative to pk or not.

System setup. For a defender Bob, the following operations for
system setup are executed: (i) a key pair (skBob, pkBob) is gener-
ated via the signature scheme SIG; (ii) the full nodes provided
by Bob in the B2CSM blockchain network form a committee CBob

containing nBob (nBob ≥ 3 f Bob + 1)) nodes (CBob
1 , · · · , CBob

nBob); each
full node CBob

i also possesses a key pair (skC
Bob
i , pkC

Bob
i) generated

via the signature scheme SIG. All the secret keys are kept private
while the public keys are publicly known. Meanwhile, Bob creates
a private channel in the B2CSM blockchain network by letting the
committee nodes (CBob

1 , · · · , CBob
nBob) join in the channel. For cyber

intelligence sharing, if Bob agrees to share the cyber intelligence
with another defender Cindy (or with more defenders), they would
jointly create and let some of their full nodes join in a consortium
channel. The consortium channel follows the same requirement
that nconsortium ≥ 3 f consortium + 1 where nconsortium is the total num-
ber of full nodes in the consortium channel while f consortium is the
maximum number of faulty nodes that can be tolerated.

Based on the setup, at a high-level, the B2CSM system operates
in two main phases:

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82

Fig. B.2. Illustration of B2CSM architecture based on Blockchain and decentralized storage network.

Table B.1
Key notations related to the M2-based B2CSM system design.

Notation Represent for

G(t) the collected cyber data for time window t by a B2CSM agent
(skBob, pkBob) the defender Bob’s secret key and public key
nBob the number of full nodes provided by the enterprise managed by defender Bob
f Bob the number of faulty nodes that can be tolerated by the nBob full nodes
CBob the committee formed by the nBob full nodes provided by the defender Bob, it also

interchangeably called the private channel or ledger created by defender Bob
CBob

i each full node in the committee CBob, i = {1, · · · , nBob}
(skC

Bob
i , pkC

Bob
i) the secret and public key pair for the full node CBob

i
θ the parameter of selected neighbors in the gossip-based diffusion mechanism
Ooracle an oracle protocol providing a black-box call for the collected cyber data
sid the session id used to uniquely identify a protocol instance
πoracle the authenticity proof generated by the oracle protocol Ooracle

σdata the signature generated by the B2CSM agent on behalf of the defender Bob
cid the content identifier returned by IPFS after uploading data to it
T a timer that ensures the consensus completes or else a view change will be triggered
p the number of selected full nodes in channel CBob for CSM function invocation
res the CSM invocation result; for party i, it is denoted with resi
B.1. Phase I: cyber data replication

This phase allows a defender, e.g., Bob, to robustly store the cy-
ber data via private channels in the B2CSM blockchain network.
Upon the B2CSM blockchain network, the channels and the con-
nection with IPFS are initialized, defenders can continuously write
collected data to the channel via B2CSM agents. However, the fol-
lowing challenges arise:

Challenge 1: Ensuring integrity of replicated cyber data. In a
Fabric-IPFS hybrid architecture, some nodes (even managed by one
enterprise) may be corrupted and therefore act arbitrarily, such as
dropping or tampering with the cyber data during replication. To
guarantee the integrity, we leverage a gossip-based diffusion mecha-
nism [22] and propose an augmented consensus mechanism.

Challenge 2: Guaranteeing authenticity of collected cyber data.
Another technical challenge lies in ensuring the authenticity of col-
lected cyber data. It is well-known that blockchain can guarantee
the immutability of the data stored in the ledger, while cannot
ensure the trustworthiness of the external data input, e.g., G(t)’s,
submitted to blockchain. We stress that this is an orthogonal re-
search problem about authentic data feeding to smart contract,
which relates to the so-called oracle protocols.

In B2CSM, we consider a black-box call of feasible (cen-
tralized/decentralized) oracle protocols (denoted with Ooracle) as
building blocks such as trusted execution environment (TEE)-
based [54], [10] or crowdsource-based [36]. The Ooracle takes as
input some message m and outputs (m, πoracle) where πoracle is
the proof of authenticity of m. For example, πoracle can be instan-
tiated by a signature σ ← SIG.Sign(skTEE, m), where skTEE is the
secret key only known to a memory space (e.g., so-called enclave
78
in Intel Software Guard Extensions (SGX)) [54] equipped on a B2CSM
agent. The extension of instantiating oracle protocols for B2CSM
cyber data forms an interesting future work.

Message flow of phase I. Now we present the concrete message
flow of this cyber data replication phase. We omit the session id
(denoted by sid) in the description, and it is trivial to add a unique
sid for each session to defend against replay attack. As depicted in
Fig. B.3, the message flow is as follows:

1) The cyber data G(t) on a B2CSM agent that managed by
the defender Bob is fetched by the oracle protocol Ooracle ,
which outputs (t, G(t), πoracle) where πoracle is the authentic-
ity proof over the time window t and the cyber data G(t). The
B2CSM agent signs the data (t, G(t), πoracle) and obtains the sig-
nature σdata ← SIG.Sign(skBob, (t||G(t)||πoracle)). The message
(t, G(t), πoracle, σdata) is then submitted to θ full nodes in the
private channel formed by the committee nodes CBob , where
θ = f Bob + 1 and f Bob is the number of faulty nodes that can
be tolerated in CBob , as shown in step (1) of Fig. B.3.

2) Upon receiving the message (t, G(t), πoracle, σdata), the θ full
nodes would: (i) verify the signature σdata via SIG.Verify(pkBob,

(t||G(t)||πoracle), σdata) and drop the message if σdata is invalid,
otherwise store in their local caches; (ii) start a timer T ; and
(iii) follow the gossip-based diffusion mechanism to keep for-
warding (t, G(t), πoracle, σdata) to other full nodes, i.e., step (2)
in Fig. B.3. At the end of this step, all honest full nodes would
receive the message. Note that at the end of this step the mes-
sage (t, G(t), πoracle, σdata) locates in each node’s cache instead
of writing to the ledger.

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82

Fig. B.3. The message flow of the cyber data replication phase in B2CSM system.
3) The leader node (of the consensus mechanism) in Bob’s private
channel CBob starts to write the data (t, G(t), πoracle, σdata) to
IPFS, which returns a content id (denoted by cid), i.e., steps (3.1)
and (3.2) in Fig. B.3.

4) The leader node starts the consensus procedure for the cid, as
shown in step (4) in Fig. B.3, where the PROPOSE, WRITE,
ACCEPT are the rounds of the BFT-SMaRt consensus proto-
col [8].

5) Upon the consensus about cid completes, each full node utilizes
the cid to retrieve the corresponding data (t, G(t), πoracle, σdata),
i.e., the CHECK step in Fig. B.3, from IPFS and verify the signa-
ture σdata . Then, as shown in the DECIDE step in Fig. B.3, if
σdata is valid, each honest full node updates the local ledger
(i.e., the state database in Fabric) with the key of the time win-
dow t and the value of content id cid, exemplified by Fig. 10,
and then clears the locally cached data. If σdata is invalid, a view
change3 (V C) procedure is triggered to elect a new leader node
and restart from step (3) in Fig. B.3.

Remarks. We have the following remarks about the steps above in
phase I:

• Intuitively it is slightly more efficient if the full nodes (CBob
1 ,

· · · , CBob
nBob) immediately start to retrieve data from IPFS upon ob-

taining the cid, e.g., in the PROPOSE phase of the BFT-SMaRt
protocol. However, in B2CSM, we propose to start the retrieval
at the end of the consensus procedure to keep flexible plug-in
of any BFT consensus protocols and facilitate efficient imple-
mentation and convenient deployment.

• Our design letting the leader node instead of all full nodes write
the data (t, G(t), πoracle , σdata) to IPFS minimizes the communi-
cation complexity of interaction with IPFS.

• All full nodes in the private channel CBob only need to reach
consensus on a short string of cid, e.g., 46 Bytes, instead of
the large cyber data. While noting that temporarily caching the
data (t, G(t), πoracle, σdata) on each full node CBob

i , i.e., step (2)
in Fig. B.3, is necessary due to the fact that each full node may
be selected as a new leader to write the data to IPFS upon view
change is triggered.

3 If all N full nodes executing the consensus protocol have the same leader, they
are in the same view. Views are numbered consecutively, and the leader of a view
is a replica/peer p such that p = v mod N , where v is the view number. A view
change is carried out by setting the new leader to be p = (v +1) mod N to continue
consensus execution [22].
79
• During the CHECK step, multiple full nodes need to retrieve
data from IPFS, which may pose some communication burden.
However, such cost is acceptable since: (i) the connection be-
tween full nodes and IPFS peer nodes is typically long-lived; (ii)
the number of full nodes connecting with IPFS is typically not
large, e.g., in the magnitude of tens or hundreds; (iii) the re-
quest to IPFS is directed to multiple peer nodes in IPFS instead
of a single one; (iv) the operation of cyber data replication re-
lates to the specific writing frequency, e.g., in days.

B.2. Phase II: CSM functionality invocation

Given a piece of cyber intelligence, the CSM invocation func-
tionality phase in B2CSM system operates as follows:

1) The defender Bob inputs the intelligence, the time window t of
interest, and the CSM class (e.g., N-CSM) in B2CSM App, which
submits the request to p = f Bob + 1 full nodes in the channel
CBob locating in B2CSM blockchain network.

2) The p full nodes retrieve the corresponding cyber data G(t)
from IPFS based on the time window t , and then send the cy-
ber data together with the intelligence to CSM functions that
deployed as smart contract in the CBob channel. The cyber data,
if large, is split into chunks and temporarily cached in the state
database in the CBob ledger.

3) The execution in smart contract is deterministic so that each of
the p full nodes would in principle receive the same invocation
result (denoted by resi). Then each of them (i.e., the B2CSM
middleware on it) executes SIG.Sign(skC

Bob
i , resi) to obtain the

signature σi and sends (resi, σi) back to B2CSM App.
4) The B2CSM App executes SIG.Verify(pkC

Bob
i , resi, σi), i ∈ {1, · · · ,

p} to check whether all the p signatures are valid and whether
all resi, i ∈ {1, · · · , p} are the same. If hold, the result res (which
is any resi since they are same) is treated as a valid final out-
put. Otherwise, the B2CSM App can resubmit the request to
p = 2 f Bob + 1 full nodes and then choose the majority from
the returned p pairs as a final output.

Remarks. We have the following remarks for the steps above in
phase II:

• An alternative way for CSM functionality invocation would be
sending the request to all peer nodes in the channel CBob dur-
ing the first step. Then at the last step, the B2CSM App waits for
f Bob + 1 pairs with valid signatures and of the same result, and

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82
output it as the final invocation result. Such a mechanism elim-
inates the possible re-submission described in the steps above
yet may incur slightly more communication overload. The de-
fenders can flexibly choose either way.

• To reduce verification complexity of multiple signatures from
full nodes, two feasible extensions can be applied to this phase:
(i) leverage multi-signature aggregation scheme [9] to aggre-
gate the signatures; (ii) utilize non-interactive threshold signa-
ture [30] to let each full node generate a “partial” signature
based on its secret key share; these partial signatures can be
combined to a full signature for verification. Employing these
two schemes can eventually produce only one signature (in-
stead of multiple ones from full nodes) for efficient verification.
But there need extra operations compared with the message
flow we described above: for method (i), the B2CSM App needs
to additionally perform public key aggregation; and for method
(ii), it requires the execution of a distributed key generation
algorithm [28] amongst the full nodes in CBob during system
setup. Properly integrating these methods into B2CSM for en-
hanced efficiency forms an interesting future extension.

• The cyber data caching time highly relates to the size of the
caching data. To mitigate the possibly long latency, it is feasi-
ble to cache some cyber data in advance, e.g., those within one
month, in the state database of the channel. Therefore, such a
caching latency can be eliminated. Another possible way would
be letting the smart contract/chaincode directly load cyber data
from IPFS, in that case, however, any non-determinism in Fabric
chaincode would lead to failure of CSM execution. Designing a
mechanism to handle such a situation is an interesting exten-
sion.

Appendix C. Security analysis for Fabric-IPFS enabled
architecture

We analyze that the security objectives (in Section 3.2.4) in
B2CSM are satisfied in the Fabric and IPFS enabled architecture.

Correctness. The correctness states that the outputs of the CSM
functions are reliable. We analyze each-step execution of the whole
data flow:

• The authenticity of the input cyber intelligence is ensured by
validating the digital signature attached with the intelligence
data, which is generated by the sharer. We stress that ensuring
the authenticity of the cyber intelligence per se is an orthogonal
research problem.

• The integrity of cyber data G(t) either during replication or
stored in B2CSM blockchain and IPFS enabled hybrid architec-
ture can be guaranteed, which is analyzed in later integrity
property.

• With the authentic input cyber intelligence and integrated cy-
ber data, the CSM functions can be correctly executed unless
the attacker can manipulate the execution of smart contract in
blockchain, which is of negligible probability.

• Since no more than one-third of the full nodes can be com-
promised simultaneously, namely assumption 3 in Section 3.2.5,
our design in CSM functions invocation ensures the defender to
receive the correct output via obtaining f + 1 same results or
the majority of 2 f + 1 returned results, where f is the ma-
licious nodes that can be tolerated in the specific blockchain
channel.

Integrity. The integrity objective hinges on two aspects:

• Integrity during replication. During cyber data replication, we
leverage a gossip based diffusion method and an augmented
consensus mechanism to ensure the integrity. Specifically, there
80
exist the following potential misbehaviors during replication:
(i) the leader node may be corrupted and not send the data
(t, G(t), πoracle, σdata) to IPFS or not start the consensus proce-
dure after obtaining the cid; (ii) the leader node may be cor-
rupted to maliciously modify the cid and try to let other full
nodes reach consensus on the incorrect cid.

Our B2CSM system handles these attacks by triggering a
view change to elect a new leader node and restart from step
(3) in Fig. B.3. Specifically, for case (i), the view change happens
if more than f Bob + 1 honest nodes do not receive cid after the
timer T expires, and the duration of T is a system parameter;
for case (ii), the view change is triggered by more than f Bob + 1
honest nodes if they fail to verify the signature σdata in the re-
trieved data (t, G(t), πoracle, σdata) from IPFS.

• Integrity during storage. The integrity of the stored cyber data
G(t) is assured due to the fact that: (i) the immutability prop-
erty of B2CSM blockchain (which can be reduced to the security
of cryptographic primitives such as hash functions and digital
signatures, namely assumption 1 in Section 3.2.5) ensures the
integrity of the content id cid of the cyber data; and (ii) IPFS
ensures the integrity of the cyber data since the content id cid
essentially is pertinent to the hash of the cyber data.

Availability. The availability objective is assured due to two per-
spectives: (i) the distributed architecture of blockchain and the
corruption threshold (namely assumption 3 in Section 3.2.5) en-
sures that the blockchain network for querying the content id cid
of the cyber data or invocation histories are always available; (ii)
though by default the stored content in IPFS may fade away if no
one access the content, we can still realize persistent storage by
means of pinning in IPFS cluster [31], which excludes an object
and its children from garbage collection (GC) within an IPFS node.
Therefore, the cyber data stored in IPFS is always available.

Consistency. The consistency objective is guaranteed by the
agreement property [20] of the underlying consensus mechanism
that operates in the partial synchronous network model in the
blockchain network, i.e., assumption 2 in Section 3.2.5.

Accountability. The accountability objective is ensured due to
the same reasons that described in Section 3.2.6.

References

[1] Apache, Hbase, https://hbase .apache .org/, 2021.
[2] M.T. Abdullah, S. Qidri, W. Nuryadi, S.R. Widianto, Failover cluster nodes and

ISCSI storage area network on virtualization windows server 2016, J. Online
Inform. (2020) 89–96.

[3] M.S. Abu, S.R. Selamat, A. Ariffin, R. Yusof, Cyber threat intelligence–issue and
challenges, Indones. J. Elec. Eng. Comput. Sci. 10 (2018) 371–379.

[4] B.-T.S. Alliance, Galexia, Asia-Pacific cybersecurity dashboard - a path to a se-
cure global cyberspace, http://www.bsa .org /APACcybersecurity, April 2015.

[5] P. Amthor, D. Fischer, W.E. Kühnhauser, D. Stelzer, Automated cyber threat
sensing and responding: integrating threat intelligence into security-policy-
controlled systems, in: Proc. of the 14th International Conference on Availabil-
ity, Reliability and Security, ACM, 2019, pp. 1–10.

[6] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D.
Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al., Hyperledger fabric: a dis-
tributed operating system for permissioned blockchains, in: Proc. of the 13th
EuroSys Conference, ACM, 2018, pp. 1–15.

[7] J. Benet, IPFS-content addressed, versioned, p2p file system, preprint, arXiv:
1407.3561, 2014.

[8] A. Bessani, J. Sousa, E.E. Alchieri, State machine replication for the masses with
BFT-smart, in: 2014 44th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), IEEE, 2014, pp. 355–362.

[9] D. Boneh, M. Drijvers, G. Neven, Compact multi-signatures for smaller
blockchains, in: International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT), Springer, 2018, pp. 435–464.

[10] L. Breidenbach, C. Cachin, B. Chan, A. Coventry, S. Ellis, A. Juels, F. Koushan-
far, A. Miller, B. Magauran, D. Moroz, et al., Chainlink 2.0: Next Steps in the
Evolution of Decentralized Oracle Networks, Chainlink Labs, 2021.

[11] S. Brown, J. Gommers, O. Serrano, From cyber security information sharing to
threat management, in: Proc. of the 2nd ACM Workshop on Information Shar-
ing and Collaborative Security, ACM, 2015, pp. 43–49.

https://hbase.apache.org/
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib747817164361AA821B5FC3050A4B3835s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib747817164361AA821B5FC3050A4B3835s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib747817164361AA821B5FC3050A4B3835s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibFB953EEEE5B1DDD4CEBE6E572D910333s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibFB953EEEE5B1DDD4CEBE6E572D910333s1
http://www.bsa.org/APACcybersecurity
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib950CD1E19EFBD0EC3A5F5B08393024DDs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib950CD1E19EFBD0EC3A5F5B08393024DDs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib950CD1E19EFBD0EC3A5F5B08393024DDs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib950CD1E19EFBD0EC3A5F5B08393024DDs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibEB538226448CED10F4CB3302906F9093s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibEB538226448CED10F4CB3302906F9093s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibEB538226448CED10F4CB3302906F9093s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibEB538226448CED10F4CB3302906F9093s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib7991A0F37FBCFE3FD6CE5D391DEB43F8s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib7991A0F37FBCFE3FD6CE5D391DEB43F8s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib4D2E8DF0CEC934B43D1B3FE98FC54124s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib4D2E8DF0CEC934B43D1B3FE98FC54124s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib4D2E8DF0CEC934B43D1B3FE98FC54124s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib0F1239A2B16130B7259C2B3797F95579s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib0F1239A2B16130B7259C2B3797F95579s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib0F1239A2B16130B7259C2B3797F95579s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib53E4584E8842BE6699243E468BAB67ADs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib53E4584E8842BE6699243E468BAB67ADs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib53E4584E8842BE6699243E468BAB67ADs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibB44ECFB290D63D811E70112D00F3BEFDs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibB44ECFB290D63D811E70112D00F3BEFDs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibB44ECFB290D63D811E70112D00F3BEFDs1

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82
[12] M. Castro, B. Liskov, et al., Practical Byzantine Fault Tolerance, OSDI, vol. 99,
Usenix, 1999, pp. 173–186.

[13] L. Dandurand, O.S. Serrano, Towards improved cyber security information shar-
ing, in: 2013 5th International Conference on Cyber Conflict (CYCON 2013),
IEEE, 2013, pp. 1–16.

[14] C. Dwork, N. Lynch, L. Stockmeyer, Consensus in the presence of partial syn-
chrony, J. ACM (JACM) 35 (1988) 288–323.

[15] Emergingthreats, Emerging threats rule server, https://rules .emergingthreats .
net/, 2019.

[16] M.S. Ferdous, A. Margheri, F. Paci, M. Yang, V. Sassone, Decentralised run-
time monitoring for access control systems in cloud federations, in: 2017 IEEE
37th International Conference on Distributed Computing Systems (ICDCS), IEEE,
2017, pp. 2632–2633.

[17] G. Fisk, C. Ardi, N. Pickett, J. Heidemann, M. Fisk, C. Papadopoulos, Privacy
principles for sharing cyber security data, in: 2015 IEEE Security and Privacy
Workshops, IEEE, 2015, pp. 193–197.

[18] S. Goldwasser, S. Micali, R.L. Rivest, A digital signature scheme secure against
adaptive chosen-message attacks, SIAM J. Comput. (1988) 281–308.

[19] M. Gschwandtner, L. Demetz, M. Gander, R. Maier, Integrating threat intelli-
gence to enhance an organization’s information security management, in: Proc.
of the 13th International Conference on Availability, Reliability and Security,
2018, pp. 1–8.

[20] B. Guo, Z. Lu, Q. Tang, J. Xu, Z. Zhang, Dumbo: faster asynchronous BFT pro-
tocols, in: Proc. of the ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), ACM, 2020, pp. 803–818.

[21] S. He, Q. Tang, C.Q. Wu, Censorship resistant decentralized IoT management
systems, in: Proc. of the 15th EAI International Conference on Mobile and Ubiq-
uitous Systems: Computing, Networking and Services, 2018, pp. 454–459.

[22] S. He, Q. Tang, C.Q. Wu, X. Shen, Decentralizing IoT management systems using
blockchain for censorship resistance, in: IEEE Transactions on Industrial Infor-
matics (TII), 2019, pp. 715–727.

[23] S. He, Y. Lu, Q. Tang, G. Wang, C.Q. Wu, Fair peer-to-peer content delivery via
blockchain, in: European Symposium on Research in Computer Security (ES-
ORICS), Springer, 2021, pp. 348–369.

[24] U. Helmbrecht, S. Purser, G. Cooper, D. Ikonomou, L. Marinos, E. Ouzounis, M.
Thorbrugge, A. Mitrakas, S. Capogrossi, Cybersecurity cooperation: defending
the digital frontline, Tech. rep., ENISA, 2013.

[25] Hyperledger, The ordering service, https://hyperledger-fabric .readthedocs .io /en /
release -2 .2 /orderer /ordering _service .html, 2020.

[26] International Organization for Standardization, ISO/IEC 27305:2016: informa-
tion technology-security techniques-information security incident manage-
ment, 2016.

[27] F. Jon, B. Mark, Definitive guide to cyber threat intelligence, Tech. rep., 2015.
[28] A. Kate, Y. Huang, I. Goldberg, Distributed key generation in the wild, IACR

Cryptol. ePrint Arch. 2012/377, 2012.
[29] A. Kiayias, Q. Tang, Traitor deterring schemes: using bitcoin as collateral for

digital content, in: Proc. of the ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), ACM, 2015, pp. 231–242.

[30] E. Kokoris Kogias, D. Malkhi, A. Spiegelman, Asynchronous distributed key
generation for computationally-secure randomness, consensus, and threshold
signatures, in: Proc. of the ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), ACM, 2020, pp. 1751–1767.

[31] P. Labs, Ipfs cluster, https://cluster.ipfs .io /documentation /guides /pinning/, 2021.
[32] Y. Lu, Q. Tang, G. Wang, Zebralancer: private and anonymous crowdsourcing

system atop open blockchain, in: 38th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), IEEE, 2018, pp. 853–865.

[33] A. Marcella Jr, D. Menendez, Cyber Forensics: a Field Manual for Collecting, Ex-
amining, and Preserving Evidence of Computer Crimes, Auerbach Publications,
2007.

[34] F.P. Miller, A.F. Vandome, J. McBrewster, Levenshtein Distance: Information
Theory, Computer Science, String (Computer Science), String Metric, Damerau–
Levenshtein Distance, Spell Checker, Hamming Distance, Alphascript Publishing,
2009.

[35] S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system, 2008.
[36] K. Nelaturu, J. Adler, M. Merlini, R. Berryhill, N. Veira, Z. Poulos, A. Veneris, On

public crowdsource-based mechanisms for a decentralized blockchain oracle,
IEEE Trans. Eng. Manag. (TEM) (2020) 1444–1458.

[37] C. Patsonakis, K. Samari, M. Roussopoulos, A. Kiayias, Towards a smart contract-
based, decentralized, public-key infrastructure, in: International Conference on
Cryptology and Network Security, Springer, 2017, pp. 299–321.

[38] W.M. Petullo, B. Klimkowski, W.C. Moody, J. Bundt, M. Kranch, Cyber defense
exercise artifacts, https://www.flyn .org /CDX/, 2017.

[39] D.B. Rawat, L. Njilla, K.A. Kwiat, C.A. Kamhoua, ishare: blockchain-based
privacy-aware multi-agent information sharing games for cybersecurity, in:
2018 International Conference on Computing, Networking and Communica-
tions (ICNC), IEEE, 2018, pp. 425–431.

[40] M.N. Schmitt, Tallinn Manual 2.0 on the International Law Applicable to Cyber
Operations, Cambridge University Press, 2017.

[41] O. Serrano, L. Dandurand, S. Brown, On the design of a cyber security data
sharing system, in: Proc. of the 2014 ACM Workshop on Information Sharing &
Collaborative Security, ACM, 2014, pp. 61–69.
81
[42] G. Settanni, Y. Shovgenya, F. Skopik, R. Graf, M. Wurzenberger, R. Fiedler, Ac-
quiring cyber threat intelligence through security information correlation, in:
2017 3rd IEEE International Conference on Cybernetics (CYBCONF), IEEE, 2017,
pp. 1–7.

[43] A. Shamir, How to share a secret, Commun. ACM (1979) 612–613.
[44] A. Sharma, F.M. Schuhknecht, D. Agrawal, J. Dittrich, Blurring the lines be-

tween blockchains and database systems: the case of hyperledger fabric, in:
Proc. of International Conference on Management of Data (SIGMOD), 2019,
pp. 105–122.

[45] F. Skopik, G. Settanni, R. Fiedler, A problem shared is a problem halved: a sur-
vey on the dimensions of collective cyber defense through security information
sharing, Comput. Secur. 60 (2016) 154–176.

[46] J. Sousa, A. Bessani, M. Vukolic, A byzantine fault-tolerant ordering service for
the hyperledger fabric blockchain platform, in: 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), IEEE,
2018, pp. 51–58.

[47] Suricata, Open source IDS/IPS/NSM engine, https://suricata -ids .org /download/,
2018.

[48] G. Tech, GT malware HTTP daily feed 2018 dataset, https://www.
impactcybertrust .org /dataset _view ?idDataset =836, 2019.

[49] P. Thakkar, S. Nathan, B. Viswanathan, Performance benchmarking and op-
timizing hyperledger fabric blockchain platform, in: The 26th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS), IEEE, 2018, pp. 264–276.

[50] Wikipedia, Levenshtein distance, https://en .wikipedia .org /wiki /Levenshtein _
distance, 2020.

[51] G. Wood, et al., Ethereum: a secure decentralised generalised transaction
ledger, Ethereum project yellow paper, 2014, pp. 1–32.

[52] L. Xu, L. Chen, Z. Gao, X. Fan, K. Doan, S. Xu, W. Shi, Kcrs: a blockchain-
based key compromise resilient signature system, in: International Conference
on Blockchain and Trustworthy Systems, Springer, 2019, pp. 226–239.

[53] S. Xu, M. Yung, Expecting the unexpected: towards robust credential infrastruc-
ture, in: International Conference on Financial Cryptography and Data Security
(FC), Springer, 2009, pp. 201–221.

[54] F. Zhang, E. Cecchetti, K. Croman, A. Juels, E. Shi, Town crier: an authenticated
data feed for smart contracts, in: Proc. of the ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), ACM, 2016, pp. 270–282.

Songlin He is currently working towards the
Ph.D. degree at New Jersey Institute of Technology,
Newark, NJ, USA. His main research directions in-
clude Blockchain technology, security, privacy, and de-
centralized applications involving various application
scenarios such as Internet of Things, Cyber Security,
Content Delivery Networks, Decentralized Identities,
etc. He is an IBM-certified Blockchain practitioner and
instructor, and was a research scientist in Adobe Inc.

He is also a member of IEEE and ACM.

Eric Ficke is pursuing a PhD in Computer Science
at The University of Texas at San Antonio, where he
received his Bachelor’s degree in the same field. His
research focus is in cyber security, including such top-
ics as network monitoring & analysis, security metrics,
and visualization.

Mir Mehedi Pritom is a Ph.D. student in Com-
puter Science at The University of Texas at San An-
tonio. His research interests include on cybersecurity
data analytics and quantification. He received his B.Sc.
in Computer Science from the University of Dhaka,
Bangladesh, and M.Sc. in Information Technology from
University of North Carolina Charlotte.

Huashan Chen received the M.S. degree in com-
puter science from the Institute of Information En-
gineering, Chinese Academy of Sciences in 2016, and
the Ph.D. degree in computer science from the Univer-
sity of Texas at San Antonio in 2021. His primary re-
search interests are in cybersecurity, especially mov-
ing target defense and security metrics.

http://refhub.elsevier.com/S0743-7315(22)00008-9/bib12F4C461A1F44201BCC21553A9325F41s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib12F4C461A1F44201BCC21553A9325F41s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib2819A6CA49F696FF1F9F0304FA28FBECs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib2819A6CA49F696FF1F9F0304FA28FBECs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib2819A6CA49F696FF1F9F0304FA28FBECs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib08EB7D043AA5977AFD611FA2CC4D0E6Ds1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib08EB7D043AA5977AFD611FA2CC4D0E6Ds1
https://rules.emergingthreats.net/
https://rules.emergingthreats.net/
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibE87D6C724C0F2758A29247275468A40Bs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibE87D6C724C0F2758A29247275468A40Bs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibE87D6C724C0F2758A29247275468A40Bs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibE87D6C724C0F2758A29247275468A40Bs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib44841B43B464BC2BF04D96140A8F3136s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib44841B43B464BC2BF04D96140A8F3136s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib44841B43B464BC2BF04D96140A8F3136s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibC7620C1819F52998153FA4F790222F1Cs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibC7620C1819F52998153FA4F790222F1Cs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib75334FA7953259808F2BF73CB1F69995s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib75334FA7953259808F2BF73CB1F69995s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib75334FA7953259808F2BF73CB1F69995s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib75334FA7953259808F2BF73CB1F69995s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib85F812D36CF9DA0EF10BB27B32C7076As1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib85F812D36CF9DA0EF10BB27B32C7076As1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib85F812D36CF9DA0EF10BB27B32C7076As1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibF3ABED416AF47D6E3B624122A927EC5Cs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibF3ABED416AF47D6E3B624122A927EC5Cs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibF3ABED416AF47D6E3B624122A927EC5Cs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib6DB339497F97236B0B46233E385746FFs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib6DB339497F97236B0B46233E385746FFs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib6DB339497F97236B0B46233E385746FFs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib5AE719A0F5E63E2FEEA8FA4DABCA6BA1s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib5AE719A0F5E63E2FEEA8FA4DABCA6BA1s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib5AE719A0F5E63E2FEEA8FA4DABCA6BA1s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib8EF596887E83F184BE4EE192099C9CCFs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib8EF596887E83F184BE4EE192099C9CCFs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib8EF596887E83F184BE4EE192099C9CCFs1
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibD8702F970CD8C981197CB648F35D7256s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib61E1E9C6273F726D82812F31CCD3BC0Cs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib61E1E9C6273F726D82812F31CCD3BC0Cs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibF821A181CD2B6A2A72F3F1EE253E5546s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibF821A181CD2B6A2A72F3F1EE253E5546s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibF821A181CD2B6A2A72F3F1EE253E5546s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib4AD94547EC5A6442607B9E25F3859DF7s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib4AD94547EC5A6442607B9E25F3859DF7s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib4AD94547EC5A6442607B9E25F3859DF7s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib4AD94547EC5A6442607B9E25F3859DF7s1
https://cluster.ipfs.io/documentation/guides/pinning/
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib85D3F9538099400B39748FA638DDB93Es1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib85D3F9538099400B39748FA638DDB93Es1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib85D3F9538099400B39748FA638DDB93Es1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibB6966B8CB2DE5FD7660FC01F41CFEB4As1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibB6966B8CB2DE5FD7660FC01F41CFEB4As1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibB6966B8CB2DE5FD7660FC01F41CFEB4As1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib9AC4DC36EBB5E38F335751E81ED23E53s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib9AC4DC36EBB5E38F335751E81ED23E53s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib9AC4DC36EBB5E38F335751E81ED23E53s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib9AC4DC36EBB5E38F335751E81ED23E53s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib6AB7DEAE2DDABA915564C7CE1B3CDFE6s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib6AB7DEAE2DDABA915564C7CE1B3CDFE6s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib6AB7DEAE2DDABA915564C7CE1B3CDFE6s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibFC646FE9A50BE075768B85D48D74DD65s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibFC646FE9A50BE075768B85D48D74DD65s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibFC646FE9A50BE075768B85D48D74DD65s1
https://www.flyn.org/CDX/
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib145CF5029EF9B238A6C1D2A7C900F525s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib145CF5029EF9B238A6C1D2A7C900F525s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib145CF5029EF9B238A6C1D2A7C900F525s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib145CF5029EF9B238A6C1D2A7C900F525s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib18453C8DD7A725668667BD14CCE77ECFs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib18453C8DD7A725668667BD14CCE77ECFs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib6EBEFFAD04DACC90422A23A14259EBAEs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib6EBEFFAD04DACC90422A23A14259EBAEs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib6EBEFFAD04DACC90422A23A14259EBAEs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibF1794552202DCE523C20E02B8565B2CDs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibF1794552202DCE523C20E02B8565B2CDs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibF1794552202DCE523C20E02B8565B2CDs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibF1794552202DCE523C20E02B8565B2CDs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib75618F006713AE8C4F16A5BCAC8D257Fs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibB7DD10F90115F0C785AFB0CF6D5641CAs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibB7DD10F90115F0C785AFB0CF6D5641CAs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibB7DD10F90115F0C785AFB0CF6D5641CAs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibB7DD10F90115F0C785AFB0CF6D5641CAs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib39B15E6D58B52AB59553D4016C959D3Cs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib39B15E6D58B52AB59553D4016C959D3Cs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib39B15E6D58B52AB59553D4016C959D3Cs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibD8BB79DDE8A50D48FAB93BFD2EB8C5C3s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibD8BB79DDE8A50D48FAB93BFD2EB8C5C3s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibD8BB79DDE8A50D48FAB93BFD2EB8C5C3s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibD8BB79DDE8A50D48FAB93BFD2EB8C5C3s1
https://suricata-ids.org/download/
https://www.impactcybertrust.org/dataset_view?idDataset=836
https://www.impactcybertrust.org/dataset_view?idDataset=836
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib0740C2B8CC137D8BD5B8A38D868E9699s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib0740C2B8CC137D8BD5B8A38D868E9699s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib0740C2B8CC137D8BD5B8A38D868E9699s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib0740C2B8CC137D8BD5B8A38D868E9699s1
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib21FB9081559883EF4C7B17C1CF365741s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib21FB9081559883EF4C7B17C1CF365741s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibB17851CB6C1BE1C8F38F02B4F7405856s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibB17851CB6C1BE1C8F38F02B4F7405856s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bibB17851CB6C1BE1C8F38F02B4F7405856s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib3E060DADD8DD251C47A65033BB3256FFs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib3E060DADD8DD251C47A65033BB3256FFs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib3E060DADD8DD251C47A65033BB3256FFs1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib30D21AE56AC59A20C5D5F33B7CCF6BE3s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib30D21AE56AC59A20C5D5F33B7CCF6BE3s1
http://refhub.elsevier.com/S0743-7315(22)00008-9/bib30D21AE56AC59A20C5D5F33B7CCF6BE3s1

S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82
Qiang Tang is currently a Senior Lecturer (US As-
sociate Professor) at the University of Sydney. From
2016–2020, he was an assistant professor at New Jer-
sey Institute of Technology and Director of JACOBI
Blockchain Lab. He received his Ph.D from University
of Connecticut in 2015 and did a postdoc at Cor-
nell. His research spans broadly on applied/theoretical
cryptography and blockchain technology. He received
a few awards including MIT Technical Review 35 Chi-

nese Innovators Under 35, Google Faculty Award and others. His Research
has been supported by NSF, DoE, ARFL; Google, JD.com, and gifts from
Protocol Labs and Stellar Foundation.

Guenevere (Qian) Chen (Member, IEEE) received a
Ph.D. degree in Electrical and Computer Engineering
from Mississippi State University, Mississippi State,
MS, USA, in 2014. She is an Assistant Professor with
the Department of Electrical and Computer Engineer-
ing, the University of Texas at San Antonio, San Anto-
nio, TX, USA. Her primary research area is cyber se-
curity. Her research topics include human factors and
their impacts on cybersecurity, blockchain, healthcare

information system and IoMT security, intelligent transportation system
security, industrial control systems security (SCADA and IIoT), software
vulnerability detection, and end-to-end security solutions.

Marcus D. Pendleton is a Principal Research Engi-
neer of Innovation for the 90th Cyberspace Operations
Squadron, United States Air Force. Previously, he was
a Research Engineer at the Air Force Research Labora-
tory (AFRL). His research interests include blockchain
and cross domain technologies to cyber threat intel-
ligence sharing. He earned his bachelor’s degree at
the State University of New York at Buffalo, and his
Master’s and PhD at The University of Texas at San

Antonio.

Laurent L. Njilla received his B.S. in Computer Sci-
ence from the University of Yaoundé 1 in Cameroon,
the M.S. in Computer Engineering from the University
of Central Florida (UCF) in 2005 and Ph.D. in Electri-
cal Engineering from Florida International University
(FIU). He is a Senior Research Electronics Engineer at
the Information Assurance Branch of the U.S. Air Force
Research Laboratory (AFRL), Rome, New York. Prior to
joining the AFRL, he was a Senior Systems Analyst in

the industry sector for more than 10 years. He is responsible for conduct-
ing basic research in the areas of hardware design, game theory applied
to cyber security and cyber survivability, hardware Security, online social
network, cyber threat information sharing, category theory, and blockchain
technology.

Shouhuai Xu is the Gallogly Chair Professor in
the Department of Computer Science, University of
Colorado Colorado Springs (UCCS). He is the found-
ing Director of the Laboratory for Cybersecurity Dy-
namics, which is driven by the systematic approach
of Cybersecurity Dynamics to modeling and quanti-
fying cybersecurity from a holistic perspective. This
approach has three orthogonal research thrusts: met-
rics (for quantifying security, agility, resilience, risk

and trustworthiness), cybersecurity data analytics, and cybersecurity first-
principle modeling (for seeking cybersecurity laws). His research has been
funded by AFOSR, AFRL, ARL, ARO, DOE, NSA, NSF and ONR. He co-initiated
the International Conference on Science of Cyber Security (SciSec) and is
serving as its Steering Committee Chair. He is/was an Associate Editor of
IEEE Transactions on Dependable and Secure Computing (IEEE TDSC), IEEE
Transactions on Information Forensics and Security (IEEE T-IFS), and IEEE
Transactions on Network Science and Engineering (IEEE TNSE). He received
a PhD in Computer Science from Fudan University in 2000. More informa-
tion about his research can be found at https://xu-lab.org.
82

https://xu-lab.org

	Blockchain-based automated and robust cyber security management
	1 Introduction
	1.1 Our contributions
	1.2 Related work
	1.2.1 Paper outline

	2 CSM model, functions and data structures
	2.1 CSM model
	2.1.1 Input cyber intelligence
	2.1.2 An overview of three classes of CSM functions
	2.1.3 A general CSM data structure

	2.2 CSM data structures and functions
	2.2.1 N-CSM data structure and functions
	2.2.2 T-CSM data structure and functions
	2.2.3 A-CSM data structure and functions

	3 B2CSM system and evaluation
	3.1 B2CSM model and architecture
	3.2 B2CSM system design and security analysis
	3.2.1 Instantiating the architecture as a system
	3.2.2 B2CSM system design
	3.2.3 A specific CSM functionality invocation demonstrating data flow
	3.2.4 Security objectives
	3.2.5 Threat model
	3.2.6 Security analysis

	3.3 Analyzing B2CSM system performance
	3.3.1 Performance metrics
	3.3.2 A B2CSM prototype system
	3.3.3 Experiments design and performance evaluation
	3.3.4 B2CSM performance based on experiments with real-world datasets

	4 Limitations and future extensions
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix A CSM algorithms
	A.1 N-CSM algorithms
	A.2 T-CSM algorithms
	A.3 A-CSM algorithms

	Appendix B B2CSM system design in Fabric-IPFS enabled architecture
	B.1 Phase I: cyber data replication
	B.2 Phase II: CSM functionality invocation

	Appendix C Security analysis for Fabric-IPFS enabled architecture
	References

