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We initiate the study on the problem of automated and robust Cyber Security Management (CSM). We 
exemplify the problem by investigating how CSM should respond to the discovery of cyber intelligence 
that identifies new attackers, victims, or defense capabilities. Given the complexity of CSM, we divide it 
into three classes, referred to as Network-centric (N-CSM), Tools-centric (T-CSM) and Application-centric 
(A-CSM). These lead to a range of functions for examining whether, and to what extent, a network has 
been compromised. Moreover, we propose to incorporate blockchain (via Hyperledger Fabric) to build 
a decentralized CSM system, dubbed B2CSM, that ensures the retrieval of valid invocation results for 
CSM purposes. We also integrate B2CSM with a decentralized storage network (DSN), instantiated by 
InterPlanetary File System (IPFS), to reduce on-chain storage costs without hindering its robustness. We 
present the design and implementation of the prototype B2CSM system. Experiments with real-world 
datasets show that the CSM solutions and system are effective and efficient.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

The importance of enterprise-level cyber security management 
cannot be overstated. For example, say there is a network adminis-
trator named Bob who defends a certain enterprise network. When 
Bob becomes aware of a new Advanced Persistent Threat (APT) 
attack that has been active in the wild for a while, he needs to 
investigate whether or not his network has been a victim of the 
APT and if so, what the damages are. Indeed, the standard defined 
in ISO/IEC 27035 includes a five-phase incident management pro-
cess: prepare, identify, assess, respond and learn [26]. In order to 
be effective, such standardization must be supported by tools [5]. 
However, existing tools mainly focus on vulnerability management, 
incident management, or security information and event manage-
ment [19,27]. Despite these tools, many routine cyber defense ac-
tivities are still a manual process [5], meaning that defenders can-
not respond to cyber events rapidly. Moreover, the manual process 
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is often conducted in isolation because enterprises rarely share cy-
ber intelligence with each other. This problem persists despite the 
extensive body of work highlighting the importance of sharing cy-
ber threat intelligence [3,5,11,13,41,42]. For example, learning the 
attacks that have successfully penetrated into some enterprise “A” 
would undoubtedly help another enterprise “B” defend its network 
against the same or similar attacks. This observation demonstrates 
that the problem of effective cyber security management (CSM) re-
mains largely open.

One main challenge encountered when designing an effective 
CSM system is that of ensuring its robustness. For example, a cen-
tralized CSM consists of a single point of failure, which often out-
weighs its performance advantage, especially because CSM itself is 
clearly an important target of the attackers. This and other possible 
vulnerabilities naturally motivate the use of distributed or decen-
tralized CSM. However, leveraging a classical distributed database 
that tolerates crashes for CSM purposes is still problematic because 
this technique requires one to trust all participants (i.e., crash fault 
tolerant (CFT) [2,44]) but is not resistant to attacks (i.e., Byzantine 
faults). This highlights the importance of incorporating Byzantine 
Fault-Tolerance (BFT) into a decentralized CSM.
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Another priority is the automation of CSM itself because tra-
ditionally CSM-related tasks have been done manually [5], which 
incurs delays and is tedious and error-prone. In addition, a CSM 
system should offer other properties such as accountability, mean-
ing that the actions of both providers and consumers of cyber 
intelligence should be observable by each other in order to main-
tain transparency of intent.

In this paper, we make a significant step towards formalizing 
CSM by defining three kinds of CSM functions in relation to cy-
ber intelligence sharing, whereby the participating defenders share 
and leverage cyber intelligence for their CSM purposes. Our contri-
butions can be summarized as the follows.

1.1. Our contributions

We make three contributions. First, we initiate the study of ro-
bust and automated CSM in relation to three types of cyber intelli-
gence: (i) newly detected cyber attackers, which may be leveraged 
to detect previously unidentified victims; (ii) newly detected vic-
tims, which may be leveraged to detect previously unidentified 
attackers; and (iii) new defense capabilities, which may be lever-
aged to detect previously unidentified attacks. We further clas-
sify CSM functions based on the layer from which their useful 
intelligence comes: Network-centric CSM (N-CSM), which lever-
ages network-related data for CSM purposes; Tools-centric CSM 
(T-CSM), which leverages data collected from cyber defense tools 
for CSM purposes; and Application-centric CSM (A-CSM), which 
leverages application-specific data for CSM purposes. In order to 
organize, store and process these cyber data, we propose the ab-
straction of Annotated Graph Time Series Representation (AGTSR) 
and introduce algorithms for realizing these CSM functions.

Second, we propose Blockchain-Based CSM (B2CSM) to achieve 
automated and robust CSM. The design of B2CSM raises a num-
ber of challenges. Here three such challenges are highlighted as 
follows:

• How to make the proper design choices for the B2CSM system instan-
tiation? The construction of the B2CSM system involves multi-
ple components such as blockchain type, consensus mechanism, 
state database etc. We provide concrete analysis and justify our 
design choices. For example, as there are three classes of CSM 
functions, there is a spectrum of design options (e.g., one chain 
for all classes of CSM functions vs. one chain per class of CSM 
functions) we can use for setting parameters. We explore the 
advantages and disadvantages of each option in terms of com-
plexity, maintenance workload, and flexibility, and decide to use 
one chain per class of CSM function.

• How to deal with a large volume of cyber data? The CSM data 
(e.g., network traffic) is often stored in large volumes. How-
ever, storing such large data on blockchain directly in the form 
of transactions and deploying CSM functions as smart con-
tracts would force users or other smart contracts to parse many 
blocks to extract individual transactions and find the relevant 
data. This is prohibitively inefficient. We solve this problem 
by proposing a fine-grained ledger structure in the underlying 
blockchain platform (i.e., Hyperledger Fabric [6]) to efficiently 
retrieve large-volume related cyber data, which is split into 
chunks and stored in Fabric state database. Note that such a 
design essentially takes advantage of the best features of both 
blockchain and database (i.e., security vs. performance) [44] by 
letting a blockchain act as a security layer for the nodes, so that 
they can reach consensus on the cyber data before it is stored 
in the state database and can also efficiently and securely re-
trieve cyber data from the ledger (i.e., the state database) via 
smart contract.
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• How to reduce ledger storage costs robustly? Storing cyber data in 
the state database results in a whole copy of cyber data on each 
full node (i.e., the server that participates in the consensus pro-
tocol) in the blockchain network. To further reduce such a stor-
age cost, we incorporate a Decentralized Storage Network (DSN) 
instantiated by InterPlanetary File System (IPFS) [7] so that the 
storage of a huge volume of cyber data is delegated to DSN 
while each full node only keeps a short reference (i.e., content 
identifier returned by IPFS) in state database. However, there are 
still some technical challenges to solve in such a hybrid archi-
tecture. For example, how can we cope with loss or tampering 
of the cyber data before it is submitted to the network? How 
can we ensure that the output of CSM invocations cannot be 
manipulated by malicious parties? To handle these problems, 
we propose leveraging the techniques proposed in [22] to en-
sure the integrity of the cyber data. Moreover, we ensure the 
correctness of CSM invocation results by querying from multiple 
full nodes and validating the attached signatures (as elaborated 
in Section 3.2.2).

Third, we present a full-stack prototype implementation of 
B2CSM and measure its performance. All the CSM functions are 
implemented as smart contracts (i.e., “chaincode”, in the ter-
minology of Fabric). The entire suite of fully-distributed net-
work construction scripts and full-stack implementation code 
are available online: https://github .com /Blockchain -
World /B2CSM .git. In order to evaluate the efficiency of the 
prototype system, we run it on distributed heterogeneous servers 
with some real-world cybersecurity data relevant to the three 
classes of CSM functions. Experimental results show that B2CSM 
is practical. For example, the average query latency conducting a 
specific N-CSM function ranges from 81.09 ms to 94.23 ms with 
four nodes. We also experiment with seven and ten nodes, which 
demonstrate a similar efficiency.

1.2. Related work

CSM related prior studies. Our CSM functions take specified types 
of threat intelligence as input. Prior studies in threat intelligence 
sharing can be divided into four categories: (i) characterizing the 
opportunities and challenges [24,41]; (ii) understanding the legal 
and regulatory matters [4,45]; (iii) exploring standardization and 
principles [13,17]; and (iv) developing tools [11,13,40]. Our paper 
is closely related to the preceding category (iv), but our study is 
unique because we formulate the problem of robust and automated
CSM and present a blockchain-based design and implementation. 
It is worth mentioning that CSM is different from cyber foren-
sics [33]. This is because forensics is oriented toward certain de-
tails, such as attack attribution and criminal investigation, which 
are not critical in all cases of cyber attacks, and can inhibit the 
efficient response to active attacks. In contrast, CSM prioritizes ef-
ficiency, which is closer to the aim of incident response.
Other blockchain-based decentralized applications. To the best of 
our knowledge, we are the first to investigate the application of 
blockchain for the CSM field. This is true despite the existing va-
rieties in which blockchain technology has been leveraged, which 
include far more applications than just cryptocurrency and smart 
contracts [35,51]. Some of these include: enhancing integrity and 
privacy of shared cyber security data [39]; replacing conventional 
trusted third parties to ensure fairness for peer-to-peer content 
delivery networks [23]; managing public key certificate and revo-
cation status [37]; enhancing the trustworthiness of cryptographic 
digital signatures in the presence of compromised private signing 
keys [52,53]; facilitating data integrity and data management in 
IoT systems [22]; detecting violations of access control policies in 
cloud environments [16]; managing data provenance, accountabil-
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Fig. 1. Illustration of external vs. internal attacker and victim from defender Bob’s 
(rather than defender Cindy’s) point of view.

ity and copyright protection [29]; enabling data sharing [39] and 
decentralized crowdsourcing services [32].

1.2.1. Paper outline
Section 2 describes CSM model, functions and data structures. 

Section 3 presents the design of B2CSM and the security analysis. 
Moreover, we introduce the implementation of a B2CSM prototype 
and evaluate its performance based on real cyber data. Section 4
discusses the limitations of the present study, and Section 5 con-
cludes the present paper.

2. CSM model, functions and data structures

Terminology. A cyber defender, Bob, manages a set of entities, 
which are broadly defined to accommodate computers and other 
objects of cybersecurity significance. As illustrated in Fig. 1, we 
make the distinction between external entities (i.e., those not man-
aged by Bob but which may be managed by another defender, 
Cindy) and internal entities (i.e., those managed by Bob); this ex-
ternal vs. internal distinction is from a specific defender’s point of 
view, in this case, Bob’s. An entity can be in one of three states: 
victim, attacker, or normal. A victim entity is one that has been 
compromised by an external or internal attacker entity; an attacker
entity is one that exhibits malicious behavior; and a normal entity 
is one that is neither a victim nor an attacker entity. A normal en-
tity can become a victim entity when it is attacked by an external 
or internal attacker entity, and a victim entity can elevate to an 
attacker entity.

2.1. CSM model

In the CSM model, a defender Bob, or more precisely his CSM 
App (CSMA), leverages some input cyber intelligence to identify 
victim and attacker entities, where the input intelligence may be 
(i) shared by other defenders or (ii) discovered by some cyber de-
fense tools used by the defender Bob. In what follows, we describe 
five kinds of cyber intelligence, three classes of CSM functions, and 
a general data structure designed to facilitate these CSM functions.

2.1.1. Input cyber intelligence
As illustrated in Fig. 2, we consider five kinds of input cyber 

intelligence, which are prefixed by ‘I-’.

(I-1A) Intelligence that points to some external attackers, possibly 
accompanied by the time window during which an external 
attacker is active.

(I-1B) Intelligence that points to some internal attackers, which 
may have attacked some external victims and been detected 
by another defender, or some internal victims and been de-
tected by some cyber defense tools used by Bob.

(I-2A) Intelligence that points to some external victims, which have 
been attacked by some internal or external attackers.

(I-2B) Intelligence that points to some internal victims, which have 
been attacked by some internal or external attackers. The 
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Fig. 2. CSM model with five kinds of input cyber intelligence and three classes of 
CSM functions. The naming scheme is: ‘1’ means attacker, ‘2’ means victim, and ‘3’ 
means capabilities; ‘A’ means intelligence on external entities and ‘B’ means intelli-
gence on internal entities.

intelligence may be collected, for example, by the leakage 
of data specific to the victim (e.g., social security numbers 
or passwords) or by a cyber defense tool (e.g., intrusion de-
tection system or anti-malware tool).

(I-3) Intelligence that points to some new defense capabilities, 
such as methods for detecting previously undetected attacks 
(e.g., 0-day attacks).

2.1.2. An overview of three classes of CSM functions
As depicted in Fig. 2, Bob’s CSMA takes as input some cy-

ber intelligence and the relevant cyber data, uses the CSM func-
tions (specified below) to identify other internal or external at-
tackers/victims, and outputs the resulting intelligence. Bob may 
choose to share this output with another defender, say Cindy, 
about his internal or external attackers/victims (i.e., input cyber 
intelligence I-1A, I-1B, I-2A, I-2B from Cindy’s point of view). To 
be specific, we define three classes of CSM functions, as shown in 
Fig. 2: (i) Network-centric CSM (N-CSM), which leverages network-
related data and cyber intelligence for CSM purposes; (ii) Tools-
centric CSM (T-CSM), which leverages data collected from cy-
ber defense tools and cyber intelligence for CSM purposes; and 
(iii) Application-centric CSM (A-CSM), which leverages application-
specific data and cyber intelligence for CSM purposes. Each class 
contains multiple CSM functions, and the core ideas of these func-
tions are described below.

N-CSM. N-CSM functions are centered at examining the input 
cyber intelligence against network traffic data, which may be col-
lected at a gateway between the external network (e.g., the Inter-
net) and the internal network (e.g., an enterprise network). Net-
work traffic data can be represented by IP packets and TCP/UDP 
flows, which incur different costs on storage. We define the fol-
lowing three N-CSM functions.

(N.1) This function is designed to identify internal victims of some 
external attackers, which are given as the input cyber intel-
ligence (i.e., input I-1A). Specifically, at time t′ , Bob is given 
cyber intelligence that an external attacker, identifiable by its 
IP address, attacker_IP, was active at some point in time in-
terval [t1, t2] where t′ ≥ t2. Bob needs to identify his internal 
systems that may have been compromised by the external 
attacker in time interval [t1, t2].

(N.2) This function is designed to identify external attackers that 
may have caused the compromise of some internal victims 
(i.e., input I-2B). Specifically, at time t′ , Bob is given cyber 
intelligence that an internal victim, identifiable by victim_IP, 
was attacked at some point in time interval [t1, t2] where 
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t′ ≥ t2. Bob needs to identify the external IP addresses that 
contacted victim_IP in time interval [t1, t2].

(N.3) This function is designed to identify potential secondary vic-
tims that may have been attacked before, during or after the 
known compromise of some other internal victim (i.e., input 
I-2B and/or I-1B). Specifically, at time t′ , Bob is given cyber 
intelligence that an internal victim IP address, identifiable by 
its IP address, victim_IP, was attacked at some point in time 
interval [t1, t2] where t′ ≥ t2. Then, Bob needs to identify 
other victims that were contacted by the potential attackers 
that may have compromised the given victim_IP during time 
interval [t1, t2].

T-CSM. T-CSM functions are centered at cyber defense tools, 
such as Network-based Intrusion Detection Systems (NIDSs), Host-
based Intrusion Detection Systems (HIDSs), and anti-malware sys-
tems. These tools often output alerts as indicators of malicious or 
suspicious activities. We define the following three T-CSM func-
tions.

(T.1) This function is designed to identify the attack path(s) 
through which a known internal victim was compromised (i.e., 
input I-2B). Specifically, at time t′ , Bob is given cyber intelli-
gence that an internal victim, say victim_IP, was compromised 
at some point during the time interval [t1, t2] where t′ ≥ t2. 
Then, Bob needs to identify the attack path(s) that may have 
been leveraged to compromise victim_IP.

(T.2) This function identifies victims of zero-day attacks by lever-
aging a new defense capability (i.e., input I-3). Specifically, at 
time t′ , Bob is given cyber intelligence on a new detection 
method (e.g., signature) for detecting a previously unknown 
zero-day attack. Then, Bob needs to identify the internal 
victims that were attacked according to the new detection 
method during a past time interval [t1, t2], t′ ≥ t2.

(T.3) This function is designed to identify the cascading damage 
caused by a given attacker (i.e., input I-1A or I-1B). Specifi-
cally, at time t′ , Bob is given cyber intelligence that a mali-
cious external or internal entity was active at some point in 
time interval [t1, t2] where t′ ≥ t2. Then, Bob needs to iden-
tify the entities that were directly or recursively accessed by 
the malicious entity during time interval [t1, t2].

A-CSM. A-CSM functions are centered at specific applications 
that are often exploited to wage attacks, such as drive-by down-
loads via web browsers and spear-phishing via email. As examples, 
we consider the following three A-CSM functions.

(A.1) This function is designed to identify secondary internal vic-
tims (e.g., browsers or email clients) that have been targeted 
by the same attack that succeeded against a known compro-
mised entity (i.e., input I-2B). Specifically, at time t′ , Bob is 
given cyber intelligence that an internal entity (i.e., browser 
or email user) was compromised at some point in time in-
terval [t1, t2] where t′ ≥ t2. Then, Bob needs to identify other 
internal victim entities (i.e., browsers or email users) that 
communicated with any of the external attacker (i.e., URLs 
or email users) that compromised the internal victim during 
time interval [t1, t2].

(A.2) This function is designed to identify internal victims (e.g., 
browsers or email users) of an external attacker (namely in-
put I-1A). Specifically, at time t′ , Bob is given an external 
attacker (i.e., URL or email address) that was active at some 
point in time interval [t1, t2] where t′ ≥ t2. Then, Bob needs 
to identify the other internal victims (i.e., browsers or email 
users) that may be compromised because they communi-
cated with the external attacker during time interval [t1, t2].
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(A.3) This function is designed to identify internal victims that 
may be impacted by known attacks against an external vic-
tim (e.g., spoofed URL or email address, namely input I-2A). 
Specifically, at time t′ , Bob is given cyber intelligence that an 
external victim (i.e., URL or email address) was spoofed to 
wage attacks at some point in time interval [t1, t2] where 
t′ ≥ t2. Then, Bob needs to identify the external attackers 
(i.e., URLs or email addresses) that spoofed the given external 
victim during time interval [t1, t2] and the internal victims 
(i.e., browsers or email addresses) that communicated with 
the external attacker during time interval [t1, t2].

2.1.3. A general CSM data structure
To realize the CSM functions, proper data representations are 

needed. We propose a general data structure, known as an Anno-
tated Graph Time Series Representation (AGTSR), by dividing the time 
horizon into T + 1 time windows at some resolution (e.g., hour or 
day). To reduce the number of notations, we make the following 
convention: the default use of t, t1, t2 refers to specific points in 
time; we also use the term time window t, t1, t2 to refer to the t-
th, t1-th, and t2-th time window, where 0 ≤ t, t1, t2 ≤ T .

For time window t , we use G(t) = (V (t), E(t), A(t)) to repre-
sent the relevant cyber activities for CSM purposes, where V (t)
is the vertex set with each vertex representing an entity (e.g., IP 
address, computer or device), E(t) is the arc set with each arc 
representing some communication activity, and A(t) is the annota-
tion set such that A(t) = {Auv(t) : (u, v) ∈ V (t) × V (t)} with Auv(t)
being a set of annotations associated to (u, v) ∈ V (t) × V (t) and 
Auv(t).count denotes the number of IP packets or TCP/UDP flows 
along an arc (u, v) in time window t . That is, Auv(t).count = 0
means (u, v) /∈ E(t) and Auv(t).count > 0 means (u, v) ∈ E(t), and
count is the number of IP packets or TCP/UDP flows from entity 
(e.g., IP address) u to entity v in time window t . The meanings 
of annotations in Auv(t) are specific to the class of CSM func-
tions, and will be elaborated below. In principle, G(t) may be 
stored as an adjacency matrix or list; for simplicity, we will fo-
cus on the adjacency matrix representation and Auv(t) can be 
seen as an extension of the standard adjacency matrix. Our model 
can support division of a network into subnets with both intra-
and inter-subnet communications. We can achieve this by ex-
tending G(t) = (V (t), E(t), A(t)) of time window t to Gm(t) =
(V m(t), Em(t), Am(t)), where V m(t) ⊆ V (t) are the nodes belong to 
a subnet and formulate a partition of V (t), (u, v) ∈ Em(t) means 
u, v ∈ V m(t), and Am

uv means u, v ∈ V m(t). There are also arcs 
Em,m′

(t) = {(u, v) : u ∈ V m(t), v ∈ V m′
(t)}. The cybersecurity mean-

ings of these notations are specific to the CSM functions in ques-
tion and thus elaborated later.

Besides, we define [n] = {1, . . . , n}, and use maxt∈[t1,t2] |V (t)|
to denote the maximum number of entities (e.g., computers, 
IP addresses, or browsers) during a time window in between 
time window t1 and time window t2, namely maxt∈[t1,t2] |V (t)| =
max{|V (t1)|, |V (t1 + 1)|, . . . , |V (t2)|} with 0 ≤ t1 ≤ t2 ≤ T . Simi-
larly, we define that maxt∈[t1,t2] |V m(t)| = max{|V m(t1)|, |V m(t1 +
1)|, . . . , |V m(t2)|}.

2.2. CSM data structures and functions

We now present the three concrete CSM data structures and 
functions, and the detailed algorithms are deferred to Appendix A. 
Note that all these algorithms are implemented in the smart con-
tract (i.e., chaincode) to facilitate CSM.

2.2.1. N-CSM data structure and functions
For N-CSM, AGTSR can accommodate network communications 

such that a node u ∈ V (t) represents a computer, and an arc 
(u, v) ∈ E(t) represents the communications between nodes u and 
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Fig. 3. Data structure for N-CSM.

Fig. 4. Data structure for T-CSM.

v initiated by u. In N-CSM, we are often concerned with bor-
der communications, meaning the communications between the 
internal entities and the external entities. In this case, V (t) is 
partitioned into V external and V internal , where V external is the set of 
external entities (e.g., IP addresses) and V internal is the set of inter-
nal entities. For time window t , there is a G(t) = (V (t), E(t), A(t))
as defined above. Fig. 3 illustrates G(1), G(2), . . .; for example, we 
have u2, u3, u4 ∈ V external(1) and v1, v2, v3, v4 ∈ V internal(1) where 
count is only illustrated for (u2, v1) ∈ E(1) for a better visual effect.

The N-CSM algorithm details are deferred to Appendix A.1
where Algorithm 1 realizes N-CSM function N.1 by identifying vic-
tims given an attacker; Algorithm 2 realizes N-CSM function N.2 by 
identifying potential attackers based on their communications to a 
given victim; Algorithm 3 realizes N-CSM function N.3 by identify-
ing secondary victims of the attacker that compromised the input 
victim.

2.2.2. T-CSM data structure and functions
For T-CSM, Fig. 4 shows an example network to clearly convey 

the ideas. The network has three disjoint subnets: the Internet (i.e., 
the external subnet), the demilitarized zone for external-facing 
servers (DMZ), and the local area network (LAN). This suggests that 
Bob can use (i) an AGTSR to represent the interactions between 
the Internet and the DMZ, or GI−D(t) for short; (ii) an AGTSR 
to represent the interactions between the LAN and the Internet, 
or GL−I(t) for short; and (iii) an AGTSR to represent the interac-
tions within the DMZ itself, within the LAN itself and between the 
border of the DMZ and the LAN, or GD−L(t) for short. Note that 
V (t) = V I−D(t) ∪ V L−I(t) ∪ V D−L(t). In T-CSM, the annotation of 
an arc is a list of alerts (i.e., Auv(t) = {alerts}). These alerts are trig-
gered by the traffic across each arc, which often corresponds to a 
routing path rather than a physical link.

The T-CSM algorithm details are deferred to Appendix A.2
where Algorithm 4 realizes T-CSM function T.1 by inferring the 
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Fig. 5. Data structure for A-CSM.

attack paths to the compromised internal entity; Algorithm 5 re-
alizes T-CSM function T.2 by retrospectively detecting the victims 
of a zero-day attack during a past time window prior to discovery 
of the zero-day attack; Algorithm 6 realizes T-CSM function T.3 by 
identifying the cascading damage of a given attack, specifically, it 
determines which entities were targeted by the given attacker, ei-
ther directly or recursively.

2.2.3. A-CSM data structure and functions
For A-CSM, we use the example of web applications, but the 

discussion can be adapted to accommodate other applications, e.g., 
email systems. In this example, browsers (or their IP addresses) 
are internal entities and URLs are external entities. As illustrated 
in Fig. 5, G(t) = (V (t), E(t), A(t)), where V (t) = V app(t) ∪ V URL(t), 
E(t) is the arc set such that arc (u, v) ∈ E(t) means browser 
u ∈ V app(t) visited URL v ∈ V URL(t) in time window t , each arc 
(u, v) ∈ E(t) is annotated with a timestamp ∈ Auv(t), where a value 
of −1 means (u, v) /∈ E(t).

The A-CSM algorithm details are deferred to Appendix A.3
where Algorithm 7 realizes A-CSM function A.1 by identify-
ing suspicious internal applications (i.e., potentially compromised 
browsers); Algorithm 8 realizes A-CSM function A.2 by identifying 
victim browsers given a known malicious URL; Algorithm 9 real-
izes A-CSM function A.3 by identifying victim browsers of spoofed 
(e.g., typo-squatted) URLs given the input of an abused URL with 
url_id.

3. B2CSM system and evaluation

A straightforward realization of the CSM model depicted in 
Fig. 2 would let each defender build a centralized cyber security 
management system (mainly for the sake of efficiency) to main-
tain their own cyber data and perform CSM invocation due to 
some received threat intelligence. However, such a design is insuf-
ficient due to the considerations that: (i) centralized architectures 
typically pose the risk of single-point-of-failure, and therefore a 
decentralized system would be preferable to tolerate crash faults; 
(ii) when considering a decentralized system, even in the network 
of the same enterprise that the defender manages, it is still pos-
sible that some of the servers get corrupted, hence not only crash 
fault tolerance (CFT) but also byzantine fault tolerance (BFT) are 
needed to construct a robust CSM system; (iii) besides the ro-
bust storage of cyber data, the invocation records (e.g., which party 
invoked a CSM function at a certain point in time) are also poten-
tially valuable to realize accountability, and these records should 
be tamper-proof against malicious actions; (vi) the decentralized 
system is expected to correctly execute some pre-defined oper-
ations, i.e., the CSM functions, in an automated manner instead 
of the involvement of manual procedure. To overcome these chal-
lenges, we propose leveraging blockchain to build a decentralized, 
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Fig. 6. The B2CSM model extending from the CSM model.

automated and robust blockchain-based CSM system, leading to 
B2CSM. In what follows, we present the key designs of B2CSM; 
instantiate it atop the blockchain platform; analyze its security 
properties and evaluate its performance based on real cyber data.

3.1. B2CSM model and architecture

Fig. 6 highlights the B2CSM model extended from the CSM 
model by storing cyber data, G(t)’s, in the B2CSM blockchain net-
work and incorporating B2CSM Apps and B2CSM Agents. B2CSM 
Apps are the interface for defenders to run CSM functions, by (i) 
taking as input some cyber intelligence and identifiers (e.g., a time 
frame) of the relevant cyber data and (ii) presenting the output 
of the CSM functions to the defender. B2CSM Agents collect cyber 
data and write the data to the B2CSM blockchain network.

The B2CSM model described in Fig. 6 lends itself to the B2CSM 
architecture depicted in Fig. 7, which is presented from the de-
fenders’ perspective. In this architecture, a defender uses a set of 
B2CSM agents to collect cyber data from the enterprise network. 
These agents write the collected data into the defender’s B2CSM 
blockchain network. The defender interacts with their B2CSM App 
to execute CSM functions with some input cyber intelligence. The 
CSM functions run in the form of smart contract at full nodes in 
the B2CSM blockchain network. The B2CSM middleware acts as an 
intermediary between the B2CSM App and the blockchain network. 
To provide permissioned access control, the defenders are iden-
tified via a Certificate Authority (CA). These components interact 
with each other to form the B2CSM system.

3.2. B2CSM system design and security analysis

3.2.1. Instantiating the architecture as a system
The B2CSM architecture in Fig. 7 can be instantiated into 

B2CSM systems in different ways. We now propose a concrete in-
stance by providing needed design choices:

Decision on blockchain type. We propose using the permissioned
blockchain [6] to realize B2CSM due to the following reasons: (i) 
CSM needs to authenticate its participants and users because cyber 
security management copes with sensitive data; (ii) only parties 
who are interested in CSM (e.g., honest defenders share a common 
goal of protecting their systems from malicious attacks) need to 
participate in, and therefore it is unnecessary to be public to all; 
(iii) the participating entities may not fully trust each other, high-
lighting the importance of achieving accountability.

Note that permissioned blockchains can be further divided into 
private blockchains, where the full nodes in the blockchain network 
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belong to one enterprise, and consortium blockchains, where the 
full nodes are managed by multiple enterprises.

Decision on the number of chains and their types. We propose us-
ing one chain per class of the three classes of CSM functions. The 
Fabric channel mechanism offers this service and creates a sepa-
rated “subnet” containing its joined members, its ordering service 
nodes, a shared ledger, and the application chaincodes. One-chain-
per-class provides a modular structure for the B2CSM network and 
allows for flexible extension of more potential CSM functions. In 
B2CSM, we propose two kinds of chains (or channels):

• Private chain/channel for storage: A defender of each enter-
prise can create a private channel to store its own cyber data 
and perform different CSM functions, leading to a (permis-
sioned) private B2CSM blockchain.

• Consortium chain/channel for sharing: Defenders can also 
jointly create a channel for storing cyber data (as secret 
shares [43] or encrypted) and sharing their cyber intelligence 
data, leading to a (permissioned) consortium B2CSM blockchain.

In both cases, each channel maintains a unique ledger, which con-
sists of a blockchain for on-chain data storage (as transactions) and 
state database for off-chain data storage (as key-value pairs), and 
can serve a specific CSM class, namely N-CSM, T-CSM or A-CSM.

Fig. 8 depicts the channel architecture of B2CSM. The defender 
of an enterprise can create a private channel by only allowing the 
server nodes managed by the defender to join in. Intuitively, the 
cyber data of an enterprise is maintained and accessed only by its 
own servers, which jointly maintain a distributed ledger. Moreover, 
defenders of different enterprises can create a consortium channel 
for sharing their cyber intelligence data such as the outputs of CSM 
function invocations. Following a general BFT consensus security 
model [12], the number of full nodes N in any channel satisfies 
N ≥ 3 f + 1, where f is the number of faulty nodes that can be 
tolerated.

Decision on the consensus protocol to use. Since our threat model 
considers compromised blockchain network nodes, we need to 
make B2CSM achieve Byzantine Fault Tolerant (BFT). The Order-
ing Service Nodes (OSNs) in Fabric are external nodes (i.e., rather 
than the blockchain’s full nodes) and that the ordering service 
only supports Crash Fault-Tolerance (CFT) consensus mechanisms 
such as Zookeeper with Kafka or Raft [25]. To achieve BFT, we 
propose integrating the work in [46], known as BFT-SMaRt. More-
over, we propose running the ordering service at the full nodes of 
the B2CSM blockchain, instead of delegating this service to extra 
nodes.

Decision on the state database to use. Fabric supports leveldb and 
couchdb as state databases. Although both support key-value stor-
age, couchdb offers rich queries (e.g., the value can be JSON format 
whereas leveldb only supports string-based queries). In light of 
this, we adopt couchdb as the B2CSM state database and the con-
crete data format is elaborated in Section 3.2.2.

Decision on the locality of the B2CSM middleware. We propose 
running the middleware at every B2CSM blockchain full node. The 
middleware has multiple sub-functions, such as formatting a de-
fender’s invocation of CSM functions, interacting with the B2CSM 
blockchain network, and polishing the output of CSM functions be-
fore returning it to the B2CSM App. These services are important 
because (i) different kinds of CSM functions may require different 
kinds of data pre-processing, and (ii) the middleware serves as an 
intermediate level of abstraction to support extensive functionali-
ties that may emerge in the future.
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Fig. 7. Illustration of B2CSM architecture. Each defender has a set of agents for collecting cyber data and writing into the B2CSM blockchain (either via the B2CSM Middleware 
or an independent writing module). Each defender runs a B2CSM App, which invokes CSM functions deployed in the smart contract using cyber intelligence from the defender.

Fig. 8. The channel architecture in B2CSM blockchain network. The private and consortium channels can further serve different classes of CSM, i.e., N-CSM, T-CSM or A-CSM.
3.2.2. B2CSM system design
In light of the design choices above, we now present the B2CSM 

system design, which contains two main phases: cyber data replica-
tion and CSM function invocation. We elaborate the key challenges 
in each phase and the corresponding solutions at a high-level. The 
concrete message flows are deferred to the specified appendices.

Phase I: Cyber data replication. This phase allows a defender, Bob, 
to robustly store the cyber data via private channels in the B2CSM 
blockchain network. Upon system setup, defenders can continu-
ously write collected cyber data to the channel via B2CSM agents, 
i.e., the local servers managed by Bob. The key challenge lies in 
dealing with a large volume of cyber data in terms of efficient writing, 
reading and robust storage. We propose two methods to solve this 
challenge and analyze their advantages and disadvantages. Specifi-
cally:

Method 1 (M1): Splitting into chunks with fine-grained ledger 
structure. The handling of a large volume of cyber data G(t) re-
quires efficient uploading and retrieval. First, to replicate a large 
volume of cyber data to the blockchain network, we propose di-
viding G(t) into small data units and uploading them in parallel. 
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Second, the efficiency of data retrieval largely depends on how the 
data units are stored in the B2CSM network. While it is tempt-
ing to store all of the cyber data on the blockchain in the form of 
transactions and use smart contracts to point to which blocks con-
tain the relevant data units for what time window, this design will 
incur large latency when multiple blocks need to be traversed. Be-
sides, a block may contain data units belonging to different time 
windows as the block size is fixed when initializing a channel, 
leading to possible retrieval of irrelevant cyber data. This prompts 
us to propose a proper ledger structure by extending the Fabric 
state database: the blockchain full nodes not only reach consensus 
on data units and package them into consecutive blocks, but also 
proactively update the state database for later efficient retrieval 
purposes.

Fig. 9 depicts the structure of the B2CSM ledger, where the 
blockchain stores two kinds of transactions: (i) the transactions 
containing the history of cyber data replication (i.e., who sub-
mits which cyber data to the B2CSM blockchain network); (ii) the 
transactions containing the history of CSM function invocations for 
auditing purposes. The state database stores real cyber data G(t) as 
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Fig. 9. Illustration of the B2CSM ledger structure with a blockchain and a state database. The state database stores the cyber data units.

Fig. 10. Illustration of the B2CSM ledger structure with a blockchain and a state database. The state database stores content id cid of the cyber data that is returned by IPFS.
shown in Fig. 9, where a large G(t) is divided into multiple data 
units. For example, time_window1 consists of two data units that 
are respectively keyed by time_window1-0 and time_window1-1. 
When defenders make CSM queries, the B2CSM middleware can 
invoke the CSM functionalities in the smart contracts, which take 
as input the relevant cyber data that is retrieved from the state 
database. This fine-grained ledger structure leverages the advan-
tages of both blockchain and database structures [44] to facilitate 
blockchain-based applications as they process large volumes of 
data.

Method 2 (M2): Integrating with decentralized storage net-
work. An alternative way of handling a large volume of cyber data 
is to incorporate a decentralized storage network, instantiated by 
IPFS. The key idea lies in storing the real cyber data in the IPFS 
while recording a reference, i.e., the returned content id cid of 
the cyber data on blockchain. We leverage the (private) IPFS clus-
ter [31] that can be deployed by the defender on its own servers 
instead of the public version to store the cyber data since in that 
case, the data uploaded to IPFS typically needs to be encrypted, 
leading to extra cost for data decryption during retrieval.

One potential issue that may appear in the Fabric-IPFS enabled 
hybrid architecture is that a corrupted full node in the B2CSM 
blockchain network may maliciously modify or drop the cid, lead-
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ing to subsequent inaccessibility. To tackle this issue, we leverage 
a gossip-based1 diffusion method [22] and propose an augmented 
consensus mechanism. At a high-level, the replication procedure 
M2 works as follows: (i) a B2CSM agent signs the collected cyber 
data G(t) along with the time window t and submitted to f + 1
full nodes in the defender created private B2CSM blockchain chan-
nel; (ii) these f + 1 full nodes execute the gossip procedure so 
that all full nodes can cache the cyber data temporarily; (iii) the 
leader node in the consensus mechanism submits the cyber data 
to IPFS and receives the cid, then starts the BFT consensus, e.g., via 
BFT-SMaRt [8] consensus mechanism, with other full nodes, even-
tually all honest full nodes receive the correct cid; (iv) each full 
node retrieves the data in IPFS using the cid and verifies the at-
tached signature generated by defender, whereupon it updates the 
state database with the key of time window t and the value of 
cid, as depicted in Fig. 10, and then clears the locally cached cy-
ber data. Otherwise, if the signature is invalid, a view change (VC) 
is triggered to elect a new leader node and restart from the prior 

1 A gossip protocol is a procedure where the cyber data G(t) can be routed to 
all full nodes by letting each peer node randomly and uniformly select θ neighbor 
nodes and forward the data [21].
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Listing 1 N-CSM cyber data G(t) example (in state database).
1 {

2 "timeWindow": "20211101", // it means "20211101-20211102" if replication frequency is one day

3 "allDataUnits": [{

4 "dataUnit": "20211101-0",

5 "externalIPs": ["192.168.10.74", "192.168.10.75", "192.168.10.81"],

6 "internalIPs": ["192.168.1.115", "192.168.1.116", "192.168.1.67"],

7 "visitRecords": [["0","1","1"],["1", "1","0"],["0", "0","0"]]

8 }, {

9 "dataUnit": "20211101-1",

10 "externalIPs": ["192.168.10.74", "192.168.10.75", "192.168.10.81"],

11 "internalIPs": ["192.168.1.121", "192.168.1.124", "192.168.1.7"],

12 "visitRecords": [["0","0","1"],["0", "1","1"],["1", "0","0"]] }, ...], ...

13 }

Listing 2 N-CSM cyber intelligence example.
1 {

2 "attackerIP": "192.168.10.74", // an external IP address

3 "timeInterval": "20211101-20211102"

4 }
step (iii). More concrete message flow and remarks are provided in 
Appendix B.1.

Comparison of the two methods M1 and M2 . The method M1
stores the cyber data in the state database, which brings the ad-
vantage that the chaincode/smart contract of CSM functions can 
conveniently and efficiently retrieve cyber data for function execu-
tion. But for this method, it essentially stores the copy of the cyber 
data on each full node, leading to higher storage cost (compared 
with M2). For the method M2, the advantage lies in a lower on-
chain storage cost, e.g., consider there are N full nodes in the 
channel and the cyber data size is 1 Gb, then the on-chain stor-
age cost for M2 is N × 46 bytes (i.e., the length of a cid) along 
with the 1 Gb cyber data that stored in IPFS, while N × 1Gb for 
method M1. However, the drawback of M2 becomes clear during 
data retrieval. Specifically, the CSM function needs to execute by 
taking as input the cyber data and threat intelligence, in that case, 
it is not common to let smart contract directly retrieve from IPFS 
(since it is external source which may cause non-determinism in 
Fabric chaincode). Hence, either new retrieval mechanism needs to 
be developed or else the query/invocation latency would become 
considerably large (for large cyber data) if the defender downloads 
from IPFS and feeds to the chaincode. How to get the best of these 
two methods will be an interesting question for future work.

Phase II: CSM functionality invocation. After the cyber data G(t)
is replicated to the Fabric channel (i.e., via method M1) or the 
Fabric-IPFS enabled architecture (i.e., via method M2), the de-
fender Bob can invoke CSM functions to identify potential risks 
with a given piece of threat intelligence. We defer the concrete 
message flow to Appendix B.2 and describe the high-level idea 
here: (i) the defender submits the time window t , the CSM type 
(such as N-CSM), and the intelligence via their B2CSM App, which 
forwards these to multiple full nodes in the private channel; (ii) 
these full nodes (i.e., the B2CSM middleware on them) execute the 
CSM functions and sign the result; (iii) the B2CSM App aggregates 
the results from these full nodes and present to the defender.

Cyber threat intelligence sharing. Besides the two main phases 
above in B2CSM system, a potential additional phase is cyber 
threat intelligence sharing. Practically sharing cyber intelligence is 
done at the defender’s discretion. In B2CSM, if the defender Bob 
would like to share cyber intelligence with other defenders, the 
following operations can be conducted: (i) the shared cyber intel-
ligence can be encrypted using public key encryption (PKE) so that 
the sensitive information contained in the intelligence data can be 
kept confidential; (ii) additionally, the cyber intelligence data can 
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be shared in a consortium channel, as discussed in Section 3.2.1, 
where only the defenders who would like to share with each other 
are involved and can access it. Such a consortium channel-based 
sharing mechanism brings an added advantage of accountability 
due to the immutability property of blockchain.

Also, in both cases, the defender who shares the (encrypted) 
cyber intelligence can sign the shared intelligence, and the result-
ing signature acts as the proof of authenticity of the intelligence 
data. As mentioned earlier, guaranteeing the authenticity of the 
threat intelligence per se is an orthogonal research problem and 
the extensive study of cyber intelligence sharing [3,5,11,13,41,42]
in B2CSM system naturally forms one future work.

3.2.3. A specific CSM functionality invocation demonstrating data flow
Now we utilize a specific CSM function N.1 and the method M1

to demonstrate a concrete data flow. As a pre-execute phase, the 
cyber data for N.1 is collected and stored as an adjacency matrix 
(as discussed in Section 2.1.3) where each row represents an ex-
ternal IP address, each column is an internal IP address, and the 
value (either 1 or 0) in the i-th row and the j-th column indicates 
whether such an external IP has visited the internal IP during a 
time period or not. The adjacency matrix is parsed in JSON for-
mat and then submitted to the private channel that was created 
by the defender in phase I (i.e., Section 3.2.2). Listing 1 illustrates 
an example of stored cyber data (units) in state database.

Consider the example of function N.1, which aims to iden-
tify potential victims of an attacker with attackerIP during time 
interval [t1, t2]. In this case, the following steps occur: (i) the 
defender invokes the B2CSM App with the threat intelligence 
shown in Listing 2 and specifies that the channel is N-CSM; (ii) 
the App sends a request to multiple full nodes, and on each 
node the B2CSM middleware invokes the N.1 function that de-
ployed as chaincode in the N-CSM channel; (iii) the chaincode 
retrieves the cyber data from state database and executes the pre-
defined processing functions and outputs the potential victim IP 
addresses that have been attacked by attackerIP during time inter-
val [11/01/2021, 11/02/2021]; (iv) the B2CSM middleware signs 
the output on behalf of the full node and returns the results along 
with signature to the App; (v) the server running the B2CSM App 
verifies the signatures for the results received from the full nodes 
and shows the defender a set of victims’ IP addresses. Listing 3
further shows an example of the cyber data that stored in IPFS. 
Note that such a potentially large JSON file in Listing 3 is split into 
chunks of 256 KB and stored on different IPFS peer nodes.
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Listing 3 N-CSM cyber data G(t) example (in IPFS).
1 {

2 "timeWindow": "20211101", // it means "20211101-20211102" if replication frequency is one day

3 "cyberData": {

4 "externalIPs": ["192.168.10.74", "192.168.10.75", "192.168.10.81",...],

5 "internalIPs": ["192.168.1.115", "192.168.1.116", "192.168.1.67",...],

6 "visitRecords": [["0","1","1",...],["1", "1","0",...],["0", "0","0",...],...]},

7 "oracle_proof": { "value": "..." },

8 "defender_signature": { "value": "..." },

9 "meta_data": { "timestamp": "...", ... }

10 }
In the case of the crashing of some full nodes in the N-CSM 
channel, a defender is notified that those servers are unreach-
able. Furthermore, if the signature verifications of some full nodes 
fail, the defender will also be notified that those servers are sus-
pected victims. Consequently, corresponding actions (e.g., replacing 
the suspicious full node and adding new servers to the N-CSM 
channel) can be taken by the defender. Note that the preceding 
discussion similarly applies to other CSM functions.

3.2.4. Security objectives
We define the following five security objectives for B2CSM:
Correctness. The correctness of the outputs of the CSM functions 

is assured, with respect to the input cyber intelligence and the 
cyber data G(t).

Integrity. The integrity of data, namely the cyber data written 
by the B2CSM agents to the B2CSM blockchain network (and DSN 
in method M2), and the invocation history of the CSM functions 
stored in blockchain, is assured. This means the data cannot be 
manipulated without detection, as long as the fraction of compro-
mised nodes in the underlying blockchain is bounded by a certain 
upper threshold.

Availability. The availability of the data stored in B2CSM is as-
sured. Specifically, the cyber data written by the B2CSM agents 
to the B2CSM blockchain network (and DSN in method M2), 
and the invocation history of the CSM functions stored in the 
blockchain must remain available as long as the fraction of com-
promised nodes in the underlying blockchain network is bounded 
from above by a certain upper threshold.

Consistency. The consistency of the data, namely cyber data 
written by the B2CSM agents to the B2CSM blockchain network 
(and DSN in method M2), and the invocation history of the CSM 
functions stored in blockchain, is assured. This means all of the 
honest nodes in a B2CSM channel have the same global view about 
the data’s state, as long as the fraction of compromised nodes in 
the underlying blockchain platform is bounded by a certain upper 
threshold.

Accountability. The B2CSM agents cannot write data into the 
blockchain network without record of the writing. Similarly, the 
B2CSM Apps cannot invoke CSM functions without record of the 
activities.

3.2.5. Threat model
We consider an attacker with the following capabilities: (i) The 

attacker can compromise B2CSM blockchain full nodes, by pene-
trating into some bounded fraction of them. The attacker has total 
control over these compromised nodes and can coordinate their 
activities in an arbitrary (i.e., Byzantine) fashion. (ii) The attacker 
can interfere with message deliveries. The attacker can control the 
order of message deliveries in the blockchain network. The at-
tacker can arbitrarily delay message deliveries to each computer 
(but not forever, see Assumption 2 below) by waging Denial-of-
Service (DoS) or other similar attacks. We consider the attacker 
with following standard abilities.
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Assumption 1. Cryptographic assurance. We make standard as-
sumptions to assure the security of cryptographic schemes (e.g., 
digital signatures). Informally speaking, these assumptions say that 
as long as cryptographic keys (if applicable) are not compromised, 
cryptographic schemes are secure. That is, in order for the attacker 
to compromise a cryptographic assurance, the attacker has to pen-
etrate into a system in question to compromise the cryptographic 
keys or cryptographic service (for attaining “oracle” access to a 
cryptographic function) [53].

Assumption 2. Communication model. For the B2CSM blockchain 
network, we assume the communications between the full nodes 
are partially synchronous, meaning that each message is delivered 
to the honest nodes within some unknown delay [14]. While in 
other steps in the B2CSM system, the communication is considered 
synchronous in the sense that the message can only be delayed up 
to a-priori known time period �.

Assumption 3. Corruption threshold. For the full nodes in any 
channel (since each (private or consortium) channel represents a 
separated ledger) of the B2CSM blockchain network, we assume 
that no more than one-third of them are compromised simultane-
ously, which is inherent to the adopted Byzantine Fault-Tolerance 
(BFT) protocol [46].

We stress that the above assumptions 1, 2 and 3 are standard 
with respect to the underlying cryptographic primitives, network 
model, and consensus protocols.

3.2.6. Security analysis
Assume that the attacker cannot compromise a defender Bob 

or the computers running the B2CSM App since otherwise the 
attacker can manipulate the output arbitrarily. Then the security 
analysis of B2CSM systems instantiated from the B2CSM architec-
ture is analyzed as follows. Note that the analysis is based on 
method M1, while extensive analysis for method M2 is deferred 
to Appendix C.

• The correctness states that the outputs of the CSM functions are 
reliable. To generate authentic outputs, we can analyze each 
step of execution during the whole data flow: (i) the authen-
ticity of the input cyber intelligence is considered correct by 
validating the digital signature attached with the intelligence 
data, which is generated by the sharer; (ii) the integrity of G(t)
stored in B2CSM blockchain network can be ensured due to 
the immutability property of blockchain; (iii) with the authen-
tic input cyber intelligence and integrated cyber data, the CSM 
functions can be correctly executed unless the attacker can ma-
nipulate the execution of smart contracts in blockchain, which 
is of negligible probability; and (iv) no more than one-third of 
the full nodes can be compromised simultaneously, namely as-
sumption 3, which ensures that the defender will receive the 
correct outputs by picking the majority consensus (i.e., f + 1
identical results or the majority of 2 f + 1 returned results, 
where f is the number of malicious nodes that can be toler-
ated in the blockchain network with N full nodes [22], [12]) of 
the invocation results from the full nodes.
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Fig. 11. Illustration of the B2CSM prototype system with 4 blockchain peer nodes, on which a private channel is created for one enterprise. Each node also acts as a replica 
of the BFT SMaRt-based ordering service and has a couchdb database. For method M2, the B2CSM middleware also contects with IPFS for cyber data writing and retrieval. 
The cases for 7 or 10 ordering (or peer) nodes follow the similar architecture and multiple-enterprise architecture can also be easily switched.
• The integrity, availability and consistency objectives are assured 
by the inherent properties of blockchain [6], including: (i) secu-
rity of cryptographic primitives such as hash functions and dig-
ital signatures, namely assumption 1; (ii) the distributed archi-
tecture of the blockchain system; (iii) the execution of the con-
sensus mechanism in the partial synchronous network model, 
i.e., assumption 2.

• The accountability is ensured as: (i) the data including B2CSM 
agents’ public keys and timestamp are stored as transactions 
when writing cyber data to the blockchain network; (ii) when 
a defender invokes CSM functions, the smart contract is auto-
matically triggered to record such an activity. Due to the afore-
mentioned integrity of blockchain data, all the activities can be 
tracked, leading to accountability.

Overall, the CSM invocation can be automatically (due to the 
reliable execution of CSM functions in the pre-determined and de-
ployed smart contract) performed without any manual inference, 
and the system is robust in the sense of all the aforementioned 
guaranteed security properties.

3.3. Analyzing B2CSM system performance

3.3.1. Performance metrics
We propose two CSM-specific performance metrics: Data Repli-

cation Throughput (DRT) and Application Query Latency (AQL). In 
particular,

The DRT metric measures the performance in writing data to 
the B2CSM blockchain. Since G(t) is often large in volume and 
would be split into multiple chunks as in method M1, each with 
m rows and n columns, e.g., m = 3 and n = 3 in Listing 1. We 
call each chunk a data unit, whose size is limited by the trans-
action size in blockchain network. Let |G(t)| be the size of G(t)
and Treplication be the total time cost for replicating G(t) to the 
blockchain network. Then we define DRT = |G(t)|/Treplication .

The AQL metric measures the time interval between when a 
defender invokes a CSM function and when the defender receives 
the response, namely Tinvocation = Treqf + Tcp + Tresf , where Treqf
is the request formatting time (i.e., the time interval between the 
B2CSM middleware receiving a request from a B2CSM App and the 
B2CSM middleware submitting the transaction to the blockchain 
network), Tcp is the chaincode processing time (i.e., the time in-
terval between the channel starting to execute the CSM function 
and the middleware receiving the query result from the blockchain 
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network), and Tresf is the response formatting time (i.e., the time 
interval between the middleware receiving the result from the 
blockchain network and the middleware sending the result to the 
B2CSM App).

The above performance metrics are affected by the follow-
ing block-cutting parameters that are involved when encapsulating 
transactions into blocks: batch size (by default, 10 transactions per 
block); batch timeout (by default, 2 seconds); and block size (by de-
fault, 512 KBytes). When the batch size or block size are met, or the 
batch timeout is reached, the OSNs encapsulate transactions into a 
new block. This means that one G(t) might be stored into mul-
tiple blocks. Inspired by [49], we use the following block-cutting 
parameters in our experiments (unless explicitly specified other-
wise): block timeout = 2 seconds; block size = 512 KB; batch size 
= 30 transactions per block.

3.3.2. A B2CSM prototype system
We implement a prototype system of B2CSM to analyze the 

performance. The preceding design choices influence the proto-
type system, and a four-node architecture is depicted in Fig. 11. 
The B2CSM prototype system is built on top of a browser-server 
architecture. The B2CSM App has two modules: one displays 
blockchain-related information, including a dashboard with vari-
ous kinds of information (e.g., B2CSM blockchain’s peer nodes’ IP 
addresses, the numbers of blocks and transactions for each chan-
nel). This presents a defender with the B2CSM blockchain’s status 
in real-time. The other module offers a defender with a web-based 
interface to run the desired CSM functions with input cyber intel-
ligence and receive the response from the CSM functions.

The Fabric software development kit provides the interfaces for 
interacting with the blockchain network (e.g., register users, install 
chaincode, instantiate chaincode, invoke transactions, and query 
ledgers). A Fabric client is instantiated when the defender initiates 
communication with the B2CSM blockchain network. This client 
only needs to be instantiated once, and subsequent sessions with 
the blockchain network can reuse it.

3.3.3. Experiments design and performance evaluation
We conduct experiments with the prototype system involving 

(as an example) one defender or enterprise, denoted by ent1. The 
defender has a range of CSMAs responsible for writing cyber data 
to the B2CSM blockchain network. The blockchain consists of four 
peer nodes, denoted by 0.peer.ent1, 1.peer.ent1 and so on. These 
peer nodes are the full nodes for the B2CSM blockchain. There are 



S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82

Fig. 12. B2CSM’s DRTCSM in different CSM experiments (averaged over 5 independent runs).
four couchdb databases: couchdb_peer0_ent1, couchdb_peer1_ent1, 
etc. Each couchdb state database is connected with one peer node 
for recording its current world state.

There are four ordering nodes: 0.orderer, 1.orderer, 2.orderer, 
and 3.orderer, which act as the replicas for BFT SMaRt-based or-
dering service and it is assured that as long as the fraction of 
malicious nodes does not exceed 1/3 (i.e., 1 when there are 4 full 
nodes), the ordering service is secure. We also conduct the exper-
iment on 7 (tolerating 2 faulty nodes) and 10 (tolerating 3 faulty 
nodes) ordering nodes that reside on peer nodes. There are three 
front-ends: 1000.frontends (for N-CSM), 2000.frontends (for T-CSM), 
and 3000.frontends (for A-CSM). These front-end nodes are respon-
sible for (i) relaying the transactions that are issued by the B2CSM 
clients to the consensus protocol and (ii) forwarding the blocks 
that are generated by the ordering nodes to peer nodes.

It is worth pointing out that the above architecture can be 
readily tuned to build a consortium blockchain network by re-
running the network setup with changed configuration file such 
that, e.g., the peer nodes’ names would change from 0.peer.ent1, 
1.peer.ent1, 2.peer.ent1, 3.peer.ent1 to 0.peer.ent1, 0.peer.ent2, 0.peer.
ent3, 0.peer.ent4 respectively and so do other service components 
such as ordering nodes, and then letting these components join in 
the same channel that a defender creates.

The hardware for conducting our experiments is a small-scale 
cluster of four Virtual Machines (VMs) residing on two hetero-
geneous servers, representing four nodes to formulate a private 
B2CSM blockchain. One server is a Dell PowerEdge R740, which is 
equipped with 2 Intel(R) Xeon(R) CPU Silver 4114 processors (with 
13.75 MB L3 cache and 20 cores of 2.2 GHz for each processor), 
256 GB (16 slots × 16 GB/slot) 2400 MHz DDR4 RDIMM mem-
ory, and an 8 TB (8 slots × 1 TB/slot) 2.5 inch SATA hard drive. 
The other server is a Dell Precision Rack 7910, which is equipped 
with 2 Intel(R) Xeon(R) CPU E5-2630 v3 processors (with 15 MB
cache and 6 cores of 2.4 GHz for each processor), 16 GB 2133 MHz 
DDR4 RDIMM ECC memory, and a 256 GB 2.5 inch SATA solid state 
drive. The four VMs have the same configuration of 8 vCPUs, 24 GB 
memory and 800 GB hard drive and are connected via a Local Area 
Network (LAN). The operating system in each VM is Ubuntu 16.04 
(64-bit) with kernel version 4.15. The Fabric version is 1.2, the Java 
version is 1.8.0_211, and the golang version is 1.11.10.

3.3.4. B2CSM performance based on experiments with real-world 
datasets

We now evaluate CSM-specific performance in DRT and AQL
using real cyber data. In N-CSM experiments, we utilize a dataset 
collected from a honeypot during 7 days, and the time resolution 
is days (i.e., each day is a time interval). In T-CSM experiments, 
we use a dataset collected by the USMA team from the 2017 CDX 
Competition [38], as if it were collected at a production enter-
prise network, which indeed instantiates the model highlighted in 
Fig. 4. As this dataset does not have ground truth tags, for our 
experimental purposes, we replay the traffic using a popular open-
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sourced intrusion detection system, Suricata [47], with a popular, 
free ruleset referred to as Emerging Threats [15]. We store Suri-
cata’s alerts in an AGTSR G(t) for time window t , where nodes 
represent the source and destination IP addresses of each attack. 
In A-CSM experiments, we consider the example of a defender 
recording how an enterprise’s browsers have accessed the exter-
nal URLs. In the simplest case, the cyber data is stored in the form 
(browser, U RL, timestamp), meaning that browser accessed the 
U RL at the time given by timestamp. Our experiments employ the 
Georgia Tech data received from [48] over the period of 2/1/2019-
2/6/2019. The data contains mappings between malware instances, 
which are treated as browser applications for our purpose, and the 
external URLs. The data is pre-processed into a bipartite AGTSR 
over the time horizon of T = 6 days.

Figures (12a), (12b), and (12c) plot B2CSM’s cyber data repli-
cation throughput (denoted by DRTCSM) using the real-world 
datasets mentioned above. We observe that the throughput varies 
with CSM scenarios. The throughput of T-CSM is significantly dif-
ferent from those of N-CSM and A-CSM. This is caused by the fact 
that the T-CSM data is quite different from the N-CSM and A-CSM 
data as follows. The T-CSM data volume is large and the volumes 
of data units vary substantially where some data units contain 
more empty elements than others (recalling that T-CSM data is 
generated from network traffic); in contrast, N-CSM data and A-
CSM data are uniformly distributed (i.e., data units are about the 
same size). This explains why T-CSM has a lower throughput. From 
the throughput, we observe that after the transaction arrival rate 
exceeds 4, the throughput stays stable, especially for N-CSM and 
A-CSM; this may be caused by the limited computing resources on 
the full nodes in our experiments. In T-CSM, we observe an “ab-
normal” throughput at transaction arrival rate 4 and data unit of 
4 × 4 (i.e., 102 KBytes per unit); this may be caused by the limited 
computing resources at the full nodes and the cumulative effect of 
non-uniform distribution in the units’ data volumes.

Figures (13a), (13b), and (13c) plot B2CSM’s AQL using the 
real-world datasets mentioned above. We observe the following: 
(i) for the request formatting time, it takes about 1.4 seconds for 
the first invocation of a CSM function, but much smaller time for 
subsequent invocations. This is because the former requires us to 
initialize a (one-time) Fabric client object on behalf of the B2CSM 
App before connecting to the blockchain network; whereas, the 
latter can simply reuse the object created by the former. (ii) for 
the chaincode processing time, the time cost varies for different 
invocations of CSM functions. (iii) the response time is relatively 
stable (i.e., varies only slightly).

Table 1 further presents the break-down of the latency time, 
where T 1

reqf is the request formatting time when a CSM function 
is invoked for the first time by a B2CSM App and T 2

reqf is the request 
formatting time after the initial invocation of a CSM function. We 
highlight that the former time costs T 1

reqf is only one-time even 
though it is relatively longer. Besides, the chaincode processing 
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Fig. 13. B2CSM’s AQL in different CSM cases (averaged over 5 independent runs).

Fig. 14. B2CSM’s DRTbc with different number of orderers (averaged over 5 independent runs).
Table 1
B2CSM’s application query latency (unit: ms).

CSM classes CSM functions T 1
reqf T 2

reqf Tcp Tresf

N-CSM N.1 1321.11 0.17 69.18 23.47
N.2 1265.16 0.18 57.6 23.49
N.3 1329.34 0.17 75.86 18.37

T-CSM T.1 1420.92 0.19 504.27 52.81
T.2 1317.57 0.16 120.13 46.92
T.3 1327.26 0.17 279.63 72.66

A-CSM A.1 1336.33 0.21 28.92 28.14
A.2 1287.17 0.19 27.51 24.23
A.3 1324.84 0.17 30.33 30.62

time depends on the smart contract complexity (i.e., the complex-
ity of a CSM function). Finally, the response formatting time Tresf

is bigger than the request formatting time T 2
reqf when disregarding 

object-creating time during the first invocation of a CSM function; 
this is because each full node needs to sign the query results be-
fore sending them back to the B2CSM App. In summary, we have 
the following conclusion: The response delay is mainly due to: (i) the 
creation of a Hyperledger Fabric client object corresponding to a CSM 
function invoked from a B2CSM App for the first time; and (ii) the spe-
cific chaincode execution of CSM functions. Reducing these time costs can 
correspondingly improve the response time.

Scalability with varied number of nodes. Figures (14a), (14b), 
and (14c) plot the throughput (denoted by DRTbc since it is re-
lated to blockchain itself instead of specific CSM class) of replicat-
ing some general data (in the form of strings) such as (a batch 
of) content ids (cids2) to the blockchain network with 4 orderers 
(tolerating 1 faulty node), 7 orderers (tolerating 2 faulty nodes) 

2 We use cids here for all experiments since we are now examining the influence 
on the number of nodes, not data type; also, as we also consider that the cyber 
data to be replicated to IPFS, and only the returned content ids are stored in B2CSM 
blockchain network, the cyber data type (i.e., N-CSM, T-CSM or A-CSM) would not 
impact writing throughput to blockchain.
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and 10 orderers (tolerating 3 faulty nodes). Note that the ordering 
service is deployed on the peer nodes without delegating to ex-
tra nodes. Each transaction submitted to the blockchain network 
contains various numbers of content ids as payloads, which yields 
different transaction sizes and updates the state database via smart 
contract. The transaction arrival rate shows how many transactions 
are simultaneously submitted via multi-threads. Note that if we 
examine one specific CSM class, e.g., N-CSM, which possesses the 
same cyber data format, then the throughput DRTCSM follows the 
same pattern with DRTbc with respect to various number of or-
derer (or peer) nodes.

From the throughput DRTbc , we have the following obser-
vations: (i) increasing the transaction size, namely incorporating 
more cids in a transaction, can significantly improve the through-
put. However, the transaction in blockchain network has size limit 
for the sake of communication efficiency, e.g., once the payload 
size exceeds about 105 KB in our testing, the replication usually 
fails; (ii) with increased number of orderer nodes that can toler-
ate more faulty nodes, the throughput is slightly decreased. This 
is reasonable since more orderer nodes reaching consensus would 
cause more communication latency; (iii) the throughput can reach 
around 700 KB/s (or higher with more engineering optimizations) 
for replicating content ids to blockchain network. Though such a 
throughput is relatively slower than a distributed database-enabled 
system, e.g., the throughput for HBase is about 5 MB/s [1], yet the 
advantage lies in the robustness assurance, as characterized by the 
security properties analyzed in Section 3.2.6.

4. Limitations and future extensions

As the first step towards a fully automated and robust cyber 
security management system, the present study has several lim-
itations which need to be addressed in future studies. First, the 
presented CSM classes (i.e., N-CSM, T-CSM and A-CSM) collectively 
do not yet cover all possible CSM functions. Future research needs 
to identify other CSM functions, which can be readily plugged into 
our proposed B2CSM system. Second, in N-CSM, the IP addresses 
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are used to identify attackers or victims; similarly, in A-CSM, URLs 
are used to identify potential victims. These identifiers may be 
easily to manipulate; for example, IP addresses may not be reli-
able when they can be spoofed or when attackers use anonymous 
communication tools. Hence, it is important to investigate more re-
liable identifiers. Third, the current design of B2CSM assumes that 
a piece of input cyber intelligence that is shared by other defend-
ers is correct as long as the associated digital signature is valid. It 
is a challenging open problem to ensure the authenticity of cyber 
threat intelligence, especially when some defenders may have been 
compromised. Fourth, it would be useful to develop a visualization 
system to present the results of B2CSM. Fifth, it is of interest to in-
tegrate machine learning (as verifiable off-chain computation) with 
the smart contract execution to enhance the CSM functions.

5. Conclusion

In this work, we initiated the study of automated and ro-
bust cyber security management (CSM). This includes the formula-
tion of three classes of CSM functions in relation to cyber threat 
intelligence sharing and a detailed description of the design of 
blockchain-based automated and robust CSM (B2CSM). We pre-
sented the implementation of a prototype B2CSM system. Exper-
imental results based on real cyber datasets show that our system 
is useful in practice. We hope the limitations of our study will in-
spire more studies on this important problem.

CRediT authorship contribution statement

Songlin He: Investigation, Validation, Visualization, Writing – 
original draft, Writing – review & editing. Eric Ficke: Data curation, 
Methodology, Writing – original draft. Mir Mehedi Ahsan Pritom:
Investigation, Validation. Huashan Chen: Data curation, Methodol-
ogy, Software, Visualization. Qiang Tang: Conceptualization, Super-
vision, Visualization, Writing – original draft, Writing – review & 
editing. Qian Chen: Investigation, Validation, Visualization. Marcus 
Pendleton: Investigation, Validation. Laurent Njilla: Investigation, 
Validation. Shouhuai Xu: Conceptualization, Methodology, Super-
vision, Visualization, Writing – original draft, Writing – review & 
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgment

We thank the anonymous reviewers for their constructive 
comments. This work was supported in part by AFRL Grant 
#FA8750-19-1-0019, ARO Grant #W911NF-17-1-0566, and NSF 
Grant #1814825. Approved for Public Release; Distribution Unlim-
ited. Case Number AFRL-2022-0399. Dated 28 Jan 2022.

Appendix A. CSM algorithms

A.1. N-CSM algorithms

Algorithm 1 realizes N-CSM function N.1 by identifying victims. 
The algorithm considers each time window within a given time 
interval [t1, t2], checking each arc originating from the attacker to 
identify the entities that were accessed by the attacker. The query 
returns a list of all such entities. The algorithm has a time com-
plexity O((t2 − t1 + 1) · maxt∈[t1,t2] |V internal(t)|), where (t2 − t1 + 1)

indicates the number of time windows that are considered.
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Algorithm 1 N-CSM function N.1 (identifying victims).
Input: attacker, T , G(t) = (V (t) = V internal(t) ∪ V external(t), E(t), A(t)) for t ∈ [t1, t2]
with 0 ≤ t1 ≤ t2 ≤ T
Output: 〈t, victims(t)〉 for t ∈ [t1, t2]
1: for t ∈ [t1, t2] do
2: if attacker ∈ V external(t) then
3: victims(t) ← ∅;
4: for v ∈ V internal(t) do 
 Check victims
5: if Aattacker,v (t).count > 0 then
6: victims(t) ← victims(t) ∪ {v};
7: return victims(t) for t ∈ [t1, t2]

Algorithm 2 N-CSM function N.2 (identifying potential attackers).
Input: victim_IP, T , G(t) = (V (t) = V internal(t) ∪ V external(t), E(t), A(t)) for t ∈ [t1, t2]
with 0 ≤ t1 ≤ t2 ≤ T
Output: 〈t, attackers(t)〉 for t ∈ [t1, t2]
1: for t ∈ [t1, t2] do
2: if victim_IP ∈ V internal(t) then
3: attackers(t) ← ∅;
4: for a ∈ V external(t) do 
 Check attackers
5: if (a, victim_IP) ∈ E(t) then
6: attackers(t) ← attackers(t) ∪ {a};
7: return attackers(t) for t ∈ [t1, t2]

Algorithm 3 N-CSM function N.3 (identifying extended victims).
Input: victim_IP, T , G(t) = (V (t) = V internal(t) ∪ V external(t), E(t), A(t)) for t ∈ [t1, t2]
with 0 ≤ t1 ≤ t2 ≤ T
Output: 〈t, potential_victims(t)〉 for t ∈ [t1, t2]

1: for t ∈ [t1, t2] do
2: potential_victims(t) ← ∅;
3: if victim_IP ∈ V internal(t) then
4: tmp_attackers ← ∅;
5: for u ∈ V external(t) do
6: if Au,victim_IP(t).count > 0 then
7: tmp_attackers(t) ← tmp_attackers(t) ∪ {u}; 
 u accessed victim_IP

8: for u ∈ tmp_attackers(t) do
9: for v ∈ V internal(t) do

10: if Au,v (t).count > 0 then
11: potential_victims(t) ← potential_victims(t) ∪ {v}; 
 u accessed v and 

may have compromised it
12: return potential_victims(t) for t ∈ [t1, t2]

Algorithm 2 realizes N-CSM function N.2 by identifying po-
tential attackers based on their communications to a given vic-
tim. The algorithm considers each time window within the time 
interval [t1, t2], checking which attacker entities tried to access 
the given victim entity. The algorithm has a time complexity 
O((t2 − t1 + 1) · maxt∈[t1,t2] |V external(t)|).

Algorithm 3 realizes N-CSM function N.3 by identifying po-
tential victims that may be attacked by the attacker that caused 
the compromise of the input victim. The algorithm uses Al-
gorithm 2 to compute the potential external attackers, which 
are then used to identify the other internal entities that may 
have been compromised by the potential attackers. The algorithm 
has a time complexity O((t2 − t1 + 1) · maxt∈[t1,t2] |V internal(t)| ·
maxt∈[t1,t2] |V external(t)|).

A.2. T-CSM algorithms

Algorithm 4 realizes T-CSM function T.1 by inferring the attack 
paths to the compromised internal entity (e.g., computer or IP ad-
dress, namely input I-2B) in time interval [t1, t2]. The algorithm 
creates a tree of potential attackers from the given compromised 
internal entity. The tree grows according to the relevant network 
activities, and adds new nodes when new attackers are identi-
fied. The resulting tree structure contains the target as the root, 
compromised internal entities as internal nodes, and all possible 
attackers as the leaves. Since the given compromised entity be-
longs to the internal LAN, the algorithm’s search space originates 
in GD−L(t′) and branches out within the network until all entities 
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Algorithm 4 T-CSM function T.1 (inferring attack paths).
Input: Victim_IP, T , G(t) = (GI−D(t), GD−L(t), GL−I(t)) for t ∈ [t1, t2] with 0 ≤ t1 ≤
t2 ≤ T
Output: Attack_Paths = (V A P , E A P , A A P )

1: V A P ← {Victim_IP}; E A P ← ∅; A A P ← ∅;
2: for t = t2 downto t1 do
3: Node_Queue ← New FIFO;
4: while Node_Queue is not empty do 
 Conduct BFT
5: for Vertex v ∈ V A P do
6: Node_Queue.enqueue(v);
7: Searched_Nodes ← ∅; Current_Node ← Node_Queue.dequeue();
8: if Current_Node ∈ V D−L(t) then
9: for Vertex v ∈ V D−L(t) do

10: if AD−L
v,Current_Node(t).alerts �= ∅ then

11: if v /∈ V A P then
12: V A P ← V A P ∪ {v};
13: for Vertex v ′ ∈ V A P do 
 Initialize empty arcs to each existing nodes
14: A A P

v,v ′ .alerts ← ∅; A A P
v ′,v .alerts ← ∅;

15: A A P
v,Current_Node.alerts ← A A P

v,Current_Node.alerts ∪ AD−L
v,Current_Node(t).alerts;

16: if v /∈ Searched_Nodes ∪ Node_Queue then
17: Node_Queue.enqueue(v);
18: Searched_Nodes ← Searched_Nodes ∪ Current_Node;
19: for sub ∈ {I− D, L− I} do
20: for Vertex v ∈ V A P do
21: if v ∈ V sub(t) then
22: for Vertex v ′ ∈ V sub(t) do
23: if Asubv ′,v (t).alerts �= ∅ then

24: if v ′ /∈ V A P then
25: V A P ← V A P ∪ {v ′};
26: for Vertex v̂ ∈ V A P do 
 Initialize empty arcs to existing nodes
27: A A P

v̂,v ′ .alerts ← ∅; A A P
v ′,v̂

.alerts ← ∅;

28: A A P
v ′,v .alerts ← A A P

v ′,v .alerts ∪ Asubv ′,v (t).alerts;

29: return Attack_Paths = (V A P , E A P , A A P )

Algorithm 5 T-CSM function T.2 (identifying victims of zero-day 
attacks).
Input: Attack_Signature, T , G(t) = {GI−D(t), GD−L(t), G L−I (t)} for t ∈ [t1, t2] with 
0 ≤ t1 ≤ t2 ≤ T
Output: 〈t, Matches(t)〉 where t ∈ [t1, t2]
1: Matches ← New linked list of empty lists
2: for t ∈ [t1, t2] do
3: for sub ∈ {I− D(t), D− L(t), L − I(t)} do
4: for Vertex v ∈ V sub(t) do
5: for Vertex v ′ ∈ V sub(t) do
6: if Attack_Signature ⊆ Asubv,v ′ (t).alerts then
7: Matches(t) ← Matches(t) ∪ {(v, v ′)}
8: return Matches(t) for t ∈ [t1, t2]

have been considered. Once the relevant GD−L(·)’s have been ex-
hausted, the algorithm checks both GI−D(·) and GL−I(·) to identify 
potential external attackers. The algorithm has a time complexity 
O((t2 − t1 + 1) · ((maxt∈[t1,t2] |V D−L(t)|)2 + maxt∈[t1,t2] |V I−D(t)| +
maxt∈[t1,t2] |V L−I(t)|) · maxt∈[t1,t2] |V (t)|).

Algorithm 5 realizes T-CSM function T.2 by retrospectively de-
tecting victims of a zero-day attack during the past time windows 
prior to discovery of the zero-day attack (i.e., input I-3). The cyber 
intelligence may come in the form of an alert sequence from ei-
ther an IDS’ output or a previously unexplained anomaly. In either 
case, the defender needs to look at all previous IDS alerts to find 
matches. For this purpose, the algorithm traces back over the past 
time windows in between t1 and t2, by looking at each IDS alert 
in the set of arc annotations. The algorithm has a time complexity 
O((t2 − t1 + 1) · ((maxt∈[t1,t2] |V D−L(t)|)2 + maxt∈[t1,t2] |V I−D(t)| +
maxt∈[t1,t2] |V L−I(t)|) · maxt∈[t1,t2] |V |(t)).

Algorithm 6 realizes T-CSM function T.3 by identifying the cas-
cading damage of a given attacker (i.e., input I-1A or I-1B). The 
algorithm determines which entities were targeted by the given 
attacker, either directly or recursively. The algorithm has a time 
complexity O(t2 − t1 + 1 · maxt∈[t1,t2] |V (t)|2).
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Algorithm 6 T-CSM function T.3 (identifying cascading damage).
Input: Attacker_IP, T , G(t) = (GI−D(t), GD−L(t), G L−I (t)) for t ∈ [t1, t2] with 0 ≤
t1 ≤ t2 ≤ T
Output: Damage_Graph = (V DG , E DG )

1: V DG ← {Attacker_IP}; E DG ← ∅; ADG ← ∅;
2: for t ∈ [t1, t2] do
3: for sub ∈ {I− D, L− I} do 
 Check arcs which come from the Internet
4: if Attacker_IP ∈ V sub(t) then
5: for Vertex v ∈ V sub(t) do
6: if AsubAttacker_IP,v (t).alerts �= ∅ then

7: if v /∈ VDG then
8: V DG ← V DG ∪ {v}
9: for Vertex v ′ ∈ V DG do 
 Initialize empty arcs to existing nodes

10: ADG
v,v ′ .alerts ← ∅; ADG

v ′,v .alerts ← ∅;

11: ADG
Attacker_IP,v .alerts ← ADG

Attacker_IP,v .alerts ∪ AsubAttacker_IP,v (t).alerts

12: for Vertex v ∈ V DG do
13: Node_Queue.enqueue(v)

14: Searched_Nodes ← ∅
15: while Node_Queue is not empty do 
 Conduct BFT
16: Current_Node ← Node_Queue.dequeue()

17: if Current_Node ∈ V D−L(t) then
18: for Vertex v ∈ V D−L(t) do
19: if AD−L

Current_Node,v (t).alerts �= ∅ then

20: if v /∈ VDG then
21: V DG ← V DG ∪ {v}
22: for Vertex v ′ ∈ V DG do 
 Initialize empty arcs to each existing node
23: ADG

v,v ′ .alerts ← ∅
24: ADG

v ′,v .alerts ← ∅
25: ADG

Current_Node,v .alerts ← ADG
Current_Node,v .alerts ∪ AD−L

Current_Node,v (t).alerts
26: if v /∈ Searched_Nodes ∪ Node_Queue then
27: Node_Queue.enqueue(v)

28: Searched_Nodes ← Searched_Nodes ∪ Current_Node
29: return Damage_Graph = (V DG , E DG , ADG )

Algorithm 7 A-CSM function A.1 (identifying compromised 
browsers).
Input: app_id, T , G(t) for t ∈ [t1, t2] and 0 ≤ t1 ≤ t2 ≤ T
Output: 〈t, suspicious_app(t)〉 for t ∈ [t1, t2]

1: for t ∈ [t1, t2] do
2: suspicious_app(t) ← ∅
3: temp_URL_set ← ∅
4: for v ∈ V URL(t) do
5: if (app_id, v) ∈ E(t) then
6: temp_URL_set(t) ← temp_URL_set(t) ∪ {v} 
 v was accessed by app_id

7: for v ∈ temp_URL_set(t) do
8: for u ∈ V app(t) do
9: if (u, v) ∈ E(t) then

10: suspicious_app(t) ← suspicious_app(t) ∪ {v} 
 app u accessed URL v
and is therefore suspicious

11: return 〈t, suspicious_app(t)〉 for t ∈ [t1, t2]

Algorithm 8 A-CSM function A.2 (identifying victims of a malicious 
URL).
Input: url_id, T , G(t) for t ∈ [t1, t2] and 0 ≤ t1 ≤ t2 ≤ T
Output: 〈t, victim_apps(t)〉 for t ∈ [t1, t2]
1: for t ∈ [t1, t2] do
2: victim_apps(t) ← ∅
3: for u ∈ V app(t) do
4: if E(t)[u, url_id] �= −1 then
5: victim_apps(t) ← victim_apps(t) ∪ {u} 
 Application u accessed url_id

6: return 〈t, victim_apps(t)〉 for t ∈ [t1, t2]

A.3. A-CSM algorithms

Algorithm 7 realizes A-CSM function A.1 by identifying suspi-
cious internal applications (i.e., potentially compromised browsers). 
The input to the algorithm is a browser as an internal victim (i.e., 
input I-2B). The output is a set of compromised browsers (internal 
victims) that have accessed any URLs visited by the given compro-
mised browser during time interval [t1, t2]. The time complexity 
O((t2 − t1 + 1) · maxt |V app(t)| · maxt |V URL(t)|).

Algorithm 8 realizes A-CSM function A.2 by identifying vic-
tim browsers. The input to the algorithm is a known malicious 
URL (i.e., input I-1A). The output is the set of browsers (inter-
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Algorithm 9 A-CSM function A.3 (identifying victim URLs and ap-
plications of spoofed URLs).
Input: url_id, T , τdistance , G(t) for t ∈ [t1, t2] with 0 ≤ t1 ≤ t2 ≤ T
Output: 〈t, spoofed_urls(t), victim_apps(t)〉 for t ∈ [t1, t2]

1: for t ∈ [t1, t2] do
2: spoofed_urls(t) ← ∅; victim_apps(t) ← ∅
3: for v ∈ V URL(t) do
4: if 0 <EDIT_DISTANCE(v, url_id) ≤ τdistance then 
 v spoofed the given URL 

url_id
5: spoofed_urls(t) ← spoofed_urls(t) ∪ {v}
6: for v ∈ spoofed_urls(t) do
7: for u ∈ V app(t) do
8: if (u, v) ∈ E(t) then
9: victim_apps(t) ← victim_apps(t) ∪ {u}

10: return 〈t, spoofed_urls(t), victim_apps(t)〉, t ∈ [t1, t2]

Algorithm 10 EDIT_DISTANCE(url1, url2) [34,50].
Input: url1, url2
Output: total_distance (edit distance between url1 and url2)

1: domain1 ← Extracting_domain(url1)

2: domain2 ← Extracting_domain(url2) 
 extracting components; e.g., ‘google’ 
and ‘com’ for google.com

3: compo1 ← Extracting_compo(domain1)

4: compo2 ← Extracting_compo(domain2)

5: MAX ← max(|compo1|, |compo2|)
6: MIN ← min(|compo1|, |compo2|)
7: total_distance ← 0
8: for i ← 0 to MIN − 1 do
9: if |compo1| >|compo2| then

10: distance ← Levenshtein(compo1[MAX − i], compo2[MIN − i])
11: else
12: distance ← Levenshtein(compo2[MAX − i], compo1[MIN − i])
13: total_distance ← total_distance + distance
14: return total_distance

nal victims) that accessed the malicious URL during time inter-
val [t1, t2]. The algorithm has a time complexity O((t2 − t1 + 1) ·
maxt |V app(t)|), where maxt |V app(t)| is the maximum number of 
browsers that accessed some URLs during a time window.

Algorithm 9 realizes A-CSM function A.3 by identifying victim 
browsers of spoofed (e.g., typo-squatted) URLs. The input to the 
algorithm is an abused URL url_id (i.e., input I-2A). The output is 
the set of possibly spoofed URLs, denoted by spoofed_urls(t), and 
the set of potential victim browsers, denoted by victim_apps(t), 
for t ∈ [t1, t2]. Lines 3-7 of Algorithm 9 find each of the spoofed 
URLs v ∈ V URL(t) that has an edit distance smaller than a given 
threshold τ_distance, where edit distance is computed using Al-
gorithm 10 (which is a variant of the Levenshtein distance al-
gorithm). Lines 1-2 of Algorithm 10 extract the domain names 
from url_1 and url_2. Lines 3-4 create the array of components 
(i.e., the components separated by the ‘.’ character) for each of 
domain names. Lines 5-6 determine the maximum and mini-
mum lengths of the component arrays respectively. Lines 8-16 
compute the edit distance for each components of component1
and component2 starting from the last component (usually top-
level domain names such as ‘.com’ or ‘.net’ are the last compo-
nents) and sum the edit distances of individual components to 
get the total_distance between domain2 and domain2 . For example, 
consider url1 = “mail.google.com/contact.php” and url2
= “mali.g00gle.com/home.php.” We define their edit dis-
tance as the edit distance between domain1 = mail.google.com
and domain2 = mali.g00gle.com. More specifically, it is the 
sum of the edit distance between components mail and mali, 
the edit distance between components google and g00gle, 
and the edit distance between components com and com respec-
tively. Lines 9-15 of Algorithm 9 identify all the victim browsers 
that visited any of the spoofed URLs in set spoof ed_urls(t). Algo-
rithm 9 has a time complexity O((t2 − t1 + 1) · maxt |V app(t)| ·
maxt |V URL(t)|).
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Fig. B.1. The B2CSM model extending from the CSM model using method M2.

Appendix B. B2CSM system design in Fabric-IPFS enabled 
architecture

Here we present the concrete message flow of B2CSM system 
in the Hyperledger Fabric and IPFS enabled architecture, i.e., the 
method M2. Fig. B.1 highlights the updated B2CSM model, which 
lends itself to the architecture shown in Fig. B.2. The notations are 
provided in Table B.1 for convenience of reference. First we intro-
duce the cryptographic primitive of digital signature for the ease 
of later description.

Digital signature. We consider an existential unforgeability 
under chosen message attack (EU-CMA) secure digital signature 
scheme [18] SIG consisting of a tuple of algorithms (KeyGen, Sign, 
Verify) where:

• SIG.KeyGen(λ) → (pk, sk). The key generation algorithm takes 
as input the security parameter λ and outputs a pair of public 
key pk and secret key sk.

• SIG.Sign(sk, m) → σ . The signing algorithm takes as input the 
secret key sk and the message m and produces the signature σ .

• SIG.Verify(pk, m, σ) → {0, 1}. This deterministic verification al-
gorithm takes as input the public key pk, the message m
and the signature σ and outputs a boolean 1 or 0 indicating 
whether σ is valid on m relative to pk or not.

System setup. For a defender Bob, the following operations for 
system setup are executed: (i) a key pair (skBob, pkBob) is gener-
ated via the signature scheme SIG; (ii) the full nodes provided 
by Bob in the B2CSM blockchain network form a committee CBob

containing nBob (nBob ≥ 3 f Bob + 1)) nodes (CBob
1 , · · · , CBob

nBob); each 
full node CBob

i also possesses a key pair (skC
Bob
i , pkC

Bob
i ) generated 

via the signature scheme SIG. All the secret keys are kept private 
while the public keys are publicly known. Meanwhile, Bob creates 
a private channel in the B2CSM blockchain network by letting the 
committee nodes (CBob

1 , · · · , CBob
nBob) join in the channel. For cyber 

intelligence sharing, if Bob agrees to share the cyber intelligence 
with another defender Cindy (or with more defenders), they would 
jointly create and let some of their full nodes join in a consortium 
channel. The consortium channel follows the same requirement 
that nconsortium ≥ 3 f consortium + 1 where nconsortium is the total num-
ber of full nodes in the consortium channel while f consortium is the 
maximum number of faulty nodes that can be tolerated.

Based on the setup, at a high-level, the B2CSM system operates 
in two main phases:
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Fig. B.2. Illustration of B2CSM architecture based on Blockchain and decentralized storage network.

Table B.1
Key notations related to the M2-based B2CSM system design.

Notation Represent for

G(t) the collected cyber data for time window t by a B2CSM agent
(skBob, pkBob) the defender Bob’s secret key and public key
nBob the number of full nodes provided by the enterprise managed by defender Bob
f Bob the number of faulty nodes that can be tolerated by the nBob full nodes
CBob the committee formed by the nBob full nodes provided by the defender Bob, it also 

interchangeably called the private channel or ledger created by defender Bob
CBob

i each full node in the committee CBob, i = {1, · · · , nBob}
(skC

Bob
i , pkC

Bob
i ) the secret and public key pair for the full node CBob

i
θ the parameter of selected neighbors in the gossip-based diffusion mechanism
Ooracle an oracle protocol providing a black-box call for the collected cyber data
sid the session id used to uniquely identify a protocol instance
πoracle the authenticity proof generated by the oracle protocol Ooracle

σdata the signature generated by the B2CSM agent on behalf of the defender Bob
cid the content identifier returned by IPFS after uploading data to it
T a timer that ensures the consensus completes or else a view change will be triggered
p the number of selected full nodes in channel CBob for CSM function invocation
res the CSM invocation result; for party i, it is denoted with resi
B.1. Phase I: cyber data replication

This phase allows a defender, e.g., Bob, to robustly store the cy-
ber data via private channels in the B2CSM blockchain network. 
Upon the B2CSM blockchain network, the channels and the con-
nection with IPFS are initialized, defenders can continuously write 
collected data to the channel via B2CSM agents. However, the fol-
lowing challenges arise:

Challenge 1: Ensuring integrity of replicated cyber data. In a 
Fabric-IPFS hybrid architecture, some nodes (even managed by one 
enterprise) may be corrupted and therefore act arbitrarily, such as 
dropping or tampering with the cyber data during replication. To 
guarantee the integrity, we leverage a gossip-based diffusion mecha-
nism [22] and propose an augmented consensus mechanism.

Challenge 2: Guaranteeing authenticity of collected cyber data. 
Another technical challenge lies in ensuring the authenticity of col-
lected cyber data. It is well-known that blockchain can guarantee 
the immutability of the data stored in the ledger, while cannot 
ensure the trustworthiness of the external data input, e.g., G(t)’s, 
submitted to blockchain. We stress that this is an orthogonal re-
search problem about authentic data feeding to smart contract, 
which relates to the so-called oracle protocols.

In B2CSM, we consider a black-box call of feasible (cen-
tralized/decentralized) oracle protocols (denoted with Ooracle) as 
building blocks such as trusted execution environment (TEE)-
based [54], [10] or crowdsource-based [36]. The Ooracle takes as 
input some message m and outputs (m, πoracle) where πoracle is 
the proof of authenticity of m. For example, πoracle can be instan-
tiated by a signature σ ← SIG.Sign(skTEE, m), where skTEE is the 
secret key only known to a memory space (e.g., so-called enclave
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in Intel Software Guard Extensions (SGX)) [54] equipped on a B2CSM 
agent. The extension of instantiating oracle protocols for B2CSM 
cyber data forms an interesting future work.

Message flow of phase I. Now we present the concrete message 
flow of this cyber data replication phase. We omit the session id 
(denoted by sid) in the description, and it is trivial to add a unique 
sid for each session to defend against replay attack. As depicted in 
Fig. B.3, the message flow is as follows:

1) The cyber data G(t) on a B2CSM agent that managed by 
the defender Bob is fetched by the oracle protocol Ooracle , 
which outputs (t, G(t), πoracle) where πoracle is the authentic-
ity proof over the time window t and the cyber data G(t). The 
B2CSM agent signs the data (t, G(t), πoracle) and obtains the sig-
nature σdata ← SIG.Sign(skBob, (t||G(t)||πoracle)). The message 
(t, G(t), πoracle, σdata) is then submitted to θ full nodes in the 
private channel formed by the committee nodes CBob , where 
θ = f Bob + 1 and f Bob is the number of faulty nodes that can 
be tolerated in CBob , as shown in step (1) of Fig. B.3.

2) Upon receiving the message (t, G(t), πoracle, σdata), the θ full 
nodes would: (i) verify the signature σdata via SIG.Verify(pkBob,

(t||G(t)||πoracle), σdata) and drop the message if σdata is invalid, 
otherwise store in their local caches; (ii) start a timer T ; and 
(iii) follow the gossip-based diffusion mechanism to keep for-
warding (t, G(t), πoracle, σdata) to other full nodes, i.e., step (2) 
in Fig. B.3. At the end of this step, all honest full nodes would 
receive the message. Note that at the end of this step the mes-
sage (t, G(t), πoracle, σdata) locates in each node’s cache instead 
of writing to the ledger.
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Fig. B.3. The message flow of the cyber data replication phase in B2CSM system.
3) The leader node (of the consensus mechanism) in Bob’s private 
channel CBob starts to write the data (t, G(t), πoracle, σdata) to 
IPFS, which returns a content id (denoted by cid), i.e., steps (3.1) 
and (3.2) in Fig. B.3.

4) The leader node starts the consensus procedure for the cid, as 
shown in step (4) in Fig. B.3, where the PROPOSE, WRITE, 
ACCEPT are the rounds of the BFT-SMaRt consensus proto-
col [8].

5) Upon the consensus about cid completes, each full node utilizes 
the cid to retrieve the corresponding data (t, G(t), πoracle, σdata), 
i.e., the CHECK step in Fig. B.3, from IPFS and verify the signa-
ture σdata . Then, as shown in the DECIDE step in Fig. B.3, if 
σdata is valid, each honest full node updates the local ledger 
(i.e., the state database in Fabric) with the key of the time win-
dow t and the value of content id cid, exemplified by Fig. 10, 
and then clears the locally cached data. If σdata is invalid, a view 
change3 (V C ) procedure is triggered to elect a new leader node 
and restart from step (3) in Fig. B.3.

Remarks. We have the following remarks about the steps above in 
phase I:

• Intuitively it is slightly more efficient if the full nodes (CBob
1 ,

· · · , CBob
nBob) immediately start to retrieve data from IPFS upon ob-

taining the cid, e.g., in the PROPOSE phase of the BFT-SMaRt 
protocol. However, in B2CSM, we propose to start the retrieval 
at the end of the consensus procedure to keep flexible plug-in 
of any BFT consensus protocols and facilitate efficient imple-
mentation and convenient deployment.

• Our design letting the leader node instead of all full nodes write 
the data (t, G(t), πoracle , σdata) to IPFS minimizes the communi-
cation complexity of interaction with IPFS.

• All full nodes in the private channel CBob only need to reach 
consensus on a short string of cid, e.g., 46 Bytes, instead of 
the large cyber data. While noting that temporarily caching the 
data (t, G(t), πoracle, σdata) on each full node CBob

i , i.e., step (2) 
in Fig. B.3, is necessary due to the fact that each full node may 
be selected as a new leader to write the data to IPFS upon view 
change is triggered.

3 If all N full nodes executing the consensus protocol have the same leader, they 
are in the same view. Views are numbered consecutively, and the leader of a view 
is a replica/peer p such that p = v mod N , where v is the view number. A view 
change is carried out by setting the new leader to be p = (v +1) mod N to continue 
consensus execution [22].
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• During the CHECK step, multiple full nodes need to retrieve 
data from IPFS, which may pose some communication burden. 
However, such cost is acceptable since: (i) the connection be-
tween full nodes and IPFS peer nodes is typically long-lived; (ii) 
the number of full nodes connecting with IPFS is typically not 
large, e.g., in the magnitude of tens or hundreds; (iii) the re-
quest to IPFS is directed to multiple peer nodes in IPFS instead 
of a single one; (iv) the operation of cyber data replication re-
lates to the specific writing frequency, e.g., in days.

B.2. Phase II: CSM functionality invocation

Given a piece of cyber intelligence, the CSM invocation func-
tionality phase in B2CSM system operates as follows:

1) The defender Bob inputs the intelligence, the time window t of 
interest, and the CSM class (e.g., N-CSM) in B2CSM App, which 
submits the request to p = f Bob + 1 full nodes in the channel 
CBob locating in B2CSM blockchain network.

2) The p full nodes retrieve the corresponding cyber data G(t)
from IPFS based on the time window t , and then send the cy-
ber data together with the intelligence to CSM functions that 
deployed as smart contract in the CBob channel. The cyber data, 
if large, is split into chunks and temporarily cached in the state 
database in the CBob ledger.

3) The execution in smart contract is deterministic so that each of 
the p full nodes would in principle receive the same invocation 
result (denoted by resi ). Then each of them (i.e., the B2CSM 
middleware on it) executes SIG.Sign(skC

Bob
i , resi) to obtain the 

signature σi and sends (resi, σi) back to B2CSM App.
4) The B2CSM App executes SIG.Verify(pkC

Bob
i , resi, σi), i ∈ {1, · · · ,

p} to check whether all the p signatures are valid and whether 
all resi, i ∈ {1, · · · , p} are the same. If hold, the result res (which 
is any resi since they are same) is treated as a valid final out-
put. Otherwise, the B2CSM App can resubmit the request to 
p = 2 f Bob + 1 full nodes and then choose the majority from 
the returned p pairs as a final output.

Remarks. We have the following remarks for the steps above in 
phase II:

• An alternative way for CSM functionality invocation would be 
sending the request to all peer nodes in the channel CBob dur-
ing the first step. Then at the last step, the B2CSM App waits for 
f Bob + 1 pairs with valid signatures and of the same result, and 



S. He, E. Ficke, M.M.A. Pritom et al. Journal of Parallel and Distributed Computing 163 (2022) 62–82
output it as the final invocation result. Such a mechanism elim-
inates the possible re-submission described in the steps above 
yet may incur slightly more communication overload. The de-
fenders can flexibly choose either way.

• To reduce verification complexity of multiple signatures from 
full nodes, two feasible extensions can be applied to this phase: 
(i) leverage multi-signature aggregation scheme [9] to aggre-
gate the signatures; (ii) utilize non-interactive threshold signa-
ture [30] to let each full node generate a “partial” signature 
based on its secret key share; these partial signatures can be 
combined to a full signature for verification. Employing these 
two schemes can eventually produce only one signature (in-
stead of multiple ones from full nodes) for efficient verification. 
But there need extra operations compared with the message 
flow we described above: for method (i), the B2CSM App needs 
to additionally perform public key aggregation; and for method 
(ii), it requires the execution of a distributed key generation 
algorithm [28] amongst the full nodes in CBob during system 
setup. Properly integrating these methods into B2CSM for en-
hanced efficiency forms an interesting future extension.

• The cyber data caching time highly relates to the size of the 
caching data. To mitigate the possibly long latency, it is feasi-
ble to cache some cyber data in advance, e.g., those within one 
month, in the state database of the channel. Therefore, such a 
caching latency can be eliminated. Another possible way would 
be letting the smart contract/chaincode directly load cyber data 
from IPFS, in that case, however, any non-determinism in Fabric 
chaincode would lead to failure of CSM execution. Designing a 
mechanism to handle such a situation is an interesting exten-
sion.

Appendix C. Security analysis for Fabric-IPFS enabled 
architecture

We analyze that the security objectives (in Section 3.2.4) in 
B2CSM are satisfied in the Fabric and IPFS enabled architecture.

Correctness. The correctness states that the outputs of the CSM 
functions are reliable. We analyze each-step execution of the whole 
data flow:

• The authenticity of the input cyber intelligence is ensured by 
validating the digital signature attached with the intelligence 
data, which is generated by the sharer. We stress that ensuring 
the authenticity of the cyber intelligence per se is an orthogonal 
research problem.

• The integrity of cyber data G(t) either during replication or 
stored in B2CSM blockchain and IPFS enabled hybrid architec-
ture can be guaranteed, which is analyzed in later integrity
property.

• With the authentic input cyber intelligence and integrated cy-
ber data, the CSM functions can be correctly executed unless 
the attacker can manipulate the execution of smart contract in 
blockchain, which is of negligible probability.

• Since no more than one-third of the full nodes can be com-
promised simultaneously, namely assumption 3 in Section 3.2.5, 
our design in CSM functions invocation ensures the defender to 
receive the correct output via obtaining f + 1 same results or 
the majority of 2 f + 1 returned results, where f is the ma-
licious nodes that can be tolerated in the specific blockchain 
channel.

Integrity. The integrity objective hinges on two aspects:

• Integrity during replication. During cyber data replication, we 
leverage a gossip based diffusion method and an augmented 
consensus mechanism to ensure the integrity. Specifically, there 
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exist the following potential misbehaviors during replication: 
(i) the leader node may be corrupted and not send the data 
(t, G(t), πoracle, σdata) to IPFS or not start the consensus proce-
dure after obtaining the cid; (ii) the leader node may be cor-
rupted to maliciously modify the cid and try to let other full 
nodes reach consensus on the incorrect cid.

Our B2CSM system handles these attacks by triggering a 
view change to elect a new leader node and restart from step 
(3) in Fig. B.3. Specifically, for case (i), the view change happens 
if more than f Bob + 1 honest nodes do not receive cid after the 
timer T expires, and the duration of T is a system parameter; 
for case (ii), the view change is triggered by more than f Bob + 1
honest nodes if they fail to verify the signature σdata in the re-
trieved data (t, G(t), πoracle, σdata) from IPFS.

• Integrity during storage. The integrity of the stored cyber data 
G(t) is assured due to the fact that: (i) the immutability prop-
erty of B2CSM blockchain (which can be reduced to the security 
of cryptographic primitives such as hash functions and digital 
signatures, namely assumption 1 in Section 3.2.5) ensures the 
integrity of the content id cid of the cyber data; and (ii) IPFS 
ensures the integrity of the cyber data since the content id cid
essentially is pertinent to the hash of the cyber data.

Availability. The availability objective is assured due to two per-
spectives: (i) the distributed architecture of blockchain and the 
corruption threshold (namely assumption 3 in Section 3.2.5) en-
sures that the blockchain network for querying the content id cid
of the cyber data or invocation histories are always available; (ii) 
though by default the stored content in IPFS may fade away if no 
one access the content, we can still realize persistent storage by 
means of pinning in IPFS cluster [31], which excludes an object 
and its children from garbage collection (GC) within an IPFS node. 
Therefore, the cyber data stored in IPFS is always available.

Consistency. The consistency objective is guaranteed by the 
agreement property [20] of the underlying consensus mechanism 
that operates in the partial synchronous network model in the 
blockchain network, i.e., assumption 2 in Section 3.2.5.

Accountability. The accountability objective is ensured due to 
the same reasons that described in Section 3.2.6.
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